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a b s t r a c t

Speech enhancement methods usually suffer from speech distortion problem, which leads to the
enhanced speech losing so much significant speech information. This damages the speech quality and
intelligibility. In order to address this issue, we propose a spectrum mend network (SpecMNet) for
monaural speech enhancement. The proposed SpecMNet aims to retrieve the lost information by mend-
ing the weighted enhanced spectrum with weighted original spectrum. More specifically, the proposed
algorithm consists of pre-enhancement network and the mend network. The main task of pre-
enhancement network is to acquire the pre-enhanced spectrum so that it can remove the most of the
noise signals. Because of the speech distortion problem, it loses a great deal of speech components.
While the original spectrum has no speech information lost. Therefore, we utilize the original spectrum
to mend the pre-enhanced spectrum by adding these two weighted spectrums so that the lost speech
information can be retrieved. Then the mend network is used to predict mend weights for these two spec-
trums. Finally, the mended spectrum is used as the enhanced output. Our experiments are conducted on
the TIMIT + (100 Nonspeech Sounds and NOISEX-92) datasets. Experimental results demonstrate that our
proposed SpecMNet approach is effective to alleviate the speech distortion problem.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction tering [4], spectral subtraction [5], statistical-based methods
In real scenarios, speech signals recorded by receivers are
always contaminated by various noises, such as wind, machine,
traffic and car noises. However, these noises can significantly
degrade the performance of automatic speech recognition (ASR)
[1], speech coding [2] and hearing aids [3]. To address this prob-
lem, speech enhancement is used to remove the noise from noisy
speech signals. This paper focuses on the monaural speech denois-
ing to improve the speech quality and intelligibility. In this paper,
we only focus on the free field, which only includes the noise. The
reverberation is not considered.

Over the past decades, many well-known traditional speech
enhancement methods have been proposed, including Wiener fil-
[6,7], and so on. Because of the powerful modeling ability of deep
neural networks (DNNs), DNNs have been gradually applied to
speech enhancement in recent years [8–13]. According to the out-
put of network, speech enhancement methods can be divided into
two categories in the time–frequency (T-F) domain: mapping
based [14] and masking based [15]. The mapping based methods
apply the spectral magnitude or log power spectrum as the net-
work output to estimate the clean speech [14,5]. While the mask-
ing based methods use the mask as the network output, such as
ideal binary mask (IBM) [16], ideal ratio mask (IRM) [17,15], ideal
amplitude mask (IAM) [18] and phase sensitive mask (PSM) [19].

Because of the powerful modeling ability of recurrent neural
networks (RNNs) and convolutional neural networks (CNNs),
supervised speech enhancement acquires a good performance. To
capture the long-term dependencies and make full use of the his-
torical information of speech signals, in [19–23], authors utilize
RNNs with long short-term memory (LSTM) or bidirectional LSTM
(BLSTM) to speech enhancement. In addition, there are also many
CNNs based speech enhancement methods [24–28]. Moreover,
the time delay neural networks (TDNNs) [29] and convolutional
recurrent networks (CRNs) [30–32] are applied to the speech
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Fig. 1. The spectrogram example of a test speech sample. (a) The noisy speech. (b)
The enhanced speech by BLSTM. (c) The target clean speech.
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enhancement. Although above speech enhancement methods can
improve the speech quality and intelligibility, they do not solve
the speech distortion problem that is harmful for the performance
of speech enhancement.

In order to describe the speech distortion problem, Fig. 1 illus-
trates the spectrogram example of a test speech sample. (a) is the
spectrogram of noisy speech. (b) is the enhanced speech spectro-
gram by BLSTM, which is based on the IRM. (c) is the spectrogram
of target clean speech. From Fig. 1 we can find that there are so
many ‘‘leaks” in the enhanced speech spectrogram (marked in
Fig. 1 (b) by bright boxes). These ‘‘leaks” are caused by the speech
distortion. The reason is that mean squared error (MSE) loss func-
tion of the speech enhancement leads to generating over-
smoothed spectrum that loses so many fine structures compared
with the clean target speech [33]. However, these ‘‘leaks” lose a
great deal of very important speech information so that damages
the speech quality and intelligibility.

To deal with the speech distortion problem, in a preliminary
study, we recently proposed a gated recurrent fusion (GRF) method
to combine the original and enhanced features for robust end-to-
end ASR [34]. The GRF aims to learn the raw fine structures from
the original features and remove the noise signals from the
enhanced features at the same time. Experimental results show
that when the original and enhanced features are fused by the
GRF, the ASR performance can be significantly improved. This
proves that combining the original and enhanced speech can
retrieve the lost speech information and relieve the speech distor-
tion problem. However, the GRF utilizes another BLSTM layer to
acquire deep representations, which increases the model parame-
ters. Moreover, the main task of the GRF is to improve the perfor-
mance of ASR not the speech quality and intelligibility.

In this study, we propose a Spectrum Mend Network (SpecM-
Net) to address the speech distortion problem. SpecMNet consists
of pre-enhancement network and mend network. The pre-
enhancement network is used to generate the pre-enhanced
spectrum, which contains significant ‘‘leaks” so that loses much
important speech information. While the original spectrum has
no ‘‘leaks”. Therefore, we apply the original spectrum to mend
these ‘‘leaks” in the pre-enhanced spectrum. And the mend net-
work is applied to predict the mend weight for each T-F bin. Then
we utilize the mend weight to fuse the original and pre-enhanced
spectrum. The fused spectrum is used as the finally enhanced out-
put. Therefore, SpecMNet aims to mend ‘‘leaks” from the original
and pre-enhanced spectrum so that it can retrieve the lost speech
information. In addition, in order to overcome the shortcoming of
the MSE loss, we fuse the MSE loss and scale-invariant source-
to-noise ratio (SI-SNR) [35–37] loss to further improve the perfor-
mance of speech enhancement.

The main contributions of this paper can be summarized as
follows:

� To the best of our knowledge, this is the first work to apply the
spectrum mend method to address the speech distortion
problem.

� We propose the SpecMNet algorithm to mend the pre-enhanced
spectrum by the weighted original spectrum so that it can
retrieve the lost speech information.

� Experiments are conducted on TIMIT + (100 Nonspeech Sounds
and NOISEX-92) datasets. Experimental results prove that our
proposed SpecMNet method can significantly improve the per-
formance of speech enhancement and it is effective to alleviate
the speech distortion problem.

The rest of this paper is organized as follows. Section 2 presents the
BLSTM based speech enhancement method. Section 3 introduces
our proposed SpecMNet algorithm. We present the dataset and
2

experimental setup in Section 4. Experimental results are shown
in Section 5. The discussions are stated in Section 6. Section 7
draws conclusions.

2. BLSTM based speech enhancement system

Monaural speech enhancement aims to remove the background
noise n from the single channel noisy speech y. We model the noisy
speech as follow:

y t½ � ¼ x t½ � þ n t½ � ð1Þ
where x denotes the target clean speech, t is the time sample index.
The short-time Fourier transformation (STFT) can convert the
speech signals in the time domain into the T-F domain, given as:

Yk;f ¼ Xk;f þ Nk;f ð2Þ
where Y;X and N are the corresponding STFT of y; x and n, respec-
tively. k is the index of time frame and f is the index of frequency
bin. For facilitating notations, the k; fð Þ is dropped in the rest of this
paper.

The IAM is a widely-accepted mask for speech enhancement
[18]. Therefore, we apply the IAM in this paper. The IAM is defined
as follows:

M ¼ jXj
jY j ð3Þ

The noisy amplitude jYj is used as the input of BLSTM to esti-

mate the IAM bM .

bM ¼ nBLSTM jYjð Þ ð4Þ
where nBLSTM denotes the mapping function of BLSTM. Then we can

acquire the enhanced amplitude ^jXj by multiplying the estimated

mask bM and the noisy input jYj.
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jbX j ¼ bM � jYj ð5Þ
where � indicates element-wise multiplication.

Finally, the signal approximation (SA) [38] is used to compute
the MSE between the enhanced and clean amplitude as the loss
function:

JMSE ¼
1
TF

X
jj ^jXj � jXjjj2F ð6Þ

where T and F denote the number of time frames and frequency

bins, respectively. The jj � jj2F means the squared Frobenius norm.

3. Our proposed SpecMNet system

In order to retrieve the lost information caused by the speech
distortion, this paper proposes a SpecMNet method for monaural
speech enhancement. Fig. 2 illustrates the schematic diagram of
our proposed SpecMNet method. From Fig. 2 we can find that the
proposed SpecMNet method includes two sub-networks, namely
pre-enhancement network and mend network. Firstly, the pre-
enhancement network aims to acquire the pre-enhanced spectrum
so that it can remove the most of the noise signals. However, this
spectrum contains so many ‘‘leaks” leading to losing significant
speech information. In order to address this problem, the mend
network is proposed to estimate the mend weight. Then the mend
weight is used to mend ‘‘leaks” and acquire the fused spectrum by
adding the weighted pre-enhanced spectrum and the original spec-
trum. Therefore, the lost speech information can be retrieved by
the fused spectrum. Finally, the fused spectrum is used as the
enhanced output.

3.1. Pre-enhancement network

The main task of pre-enhancement network is to generate the
pre-enhanced spectrum so that it can remove the most of noise sig-
nals. In a nutshell, we formulate the whole forward calculation
process as follow:

hBLSTM ¼ nBLSTM jY jð Þ; ð7Þ

bM ¼ ReLU FNN hBLSTMð Þð Þ; ð8Þ

jbXprej ¼ bM � jYj: ð9Þ
where the hBLSTM denotes the hidden state of BLSTM, the FNN means
the feed-forward neural network (FNN), the ReLU is the activation

function of Rectified Liner Unit (ReLU) and jbXprej is the pre-
enhanced spectrum.

The pre-enhancement network is same as the BLSTM based
speech enhancement system described in Section II. Although
pre-enhancement network can remove the most of noise signals,
the enhanced spectrogram contains so many ‘‘leaks” and loses
some very important speech components, which is caused by the
speech distortion problem.

3.2. Mend network

In order to address speech distortion problem and retrieve the
lost speech information, we propose the mend network to mend
these ‘‘leaks” by fusing the weighted pre-enhanced spectrum and
the weighted original spectrum. The red dotted box in Fig. 2 shows
the schematic diagram of the mend network.

The main task of the mend network is to acquire the mend
weight. We apply another BLSTM and FNN layer after the pre-
enhancement network hidden layer, firstly. Then the sigmoid acti-
vation function is used to generate the mend weight, which limits
3

the weight values ranging from 0 to 1. The process of mend net-
work is as follow:

hmend ¼ FNN nBLSTM hBLSTMð Þð Þ 2 RT�F ; ð10Þ

k ¼ r hmendð Þ 2 RT�F

¼ 1
1þe�hmend

: ð11Þ

where T and F denote the number of time frame and frequency bin,
respectively. hmend is the hidden state of mend network. rmeans the
sigmoid activation function. k is the mend weight.

We use k as the mend weight of pre-enhanced spectrum.
Although the original spectrum has no ‘‘leaks”, it is contaminated
by the noise signals. Therefore, we use (1� k) as the mend weight
of original spectrum to mask noise signals in some degree. Finally,
we mend these ‘‘leaks” by adding the weighted original spectrum
and pre-enhanced spectrum.

jbX j ¼ k� jbXprej þ 1� kð Þ � jY j ð12Þ
Through the Eq. 12, these ‘‘leaks” in the pre-enhanced spectrum

can be mended for each T-F bin so that the lost speech information

by speech distortion can be retrieved. The mended spectrum jbX j is
used as the output.

Finally, the inverse STFT (ISTFT) is used to convert the enhanced

spectrum jbX j into time domain x̂ (we drop the time sample index
t):

x̂ ¼ ISTFT jbX j;Uy

� �
ð13Þ

where Uy denotes the noisy phase spectrum.

3.3. Loss function

As for the pre-enhancement network, the SA is used to compute
the MSE between the pre-enhanced and clean spectrum as the loss
function:

JpreMSE ¼
1
TF

X
jjjbXprej � jXjjj2F ð14Þ

Because the MSE loss leads to generating over-smoothed spec-
trum that loses so many fine structures, which is harmful for
speech enhancement. In order to address this problem, instead of
using the MSE loss, as for the mend network, we apply the SI-
SNR as the loss function to improve the performance of speech
enhancement.

The SI-SNR loss function is defined as follow:

xtarget ¼ x̂; xh ix
kxk2

; ð15Þ

enoise ¼ x̂� xtarget; ð16Þ

JSI�SNR ¼ 10log10
kxtargetk2
kenoisek2

: ð17Þ

where kxk2 ¼ x; xh i is the signal power.
Finally, we fuse the MSE loss and SI-SNR loss with joint training

framework as the total loss function of our proposed SpecMNet,
which is defined as follow:

J ¼ JpreMSE � aJSI�SNR ð18Þ
where a controls the weight of these two loss functions to balance
the pre-enhancement network and the mend network. In this paper
we set a ¼ 0:1.



Fig. 2. The schematic diagram of our proposed SpecMNet method for monaural speech enhancement. The main task of the mend network is to predict the mend weight to
fuse the original and pre-enhanced spectrum.

Table 1
Configurations used for simulating training data.

Dataset randomly selecting speakers and utterances
from the TIMIT training set

Noise database 100 Nonspeech Sounds
SNR(dB) �5, 0, 5, 10, 15 and 20

Number of utterance 21726

Table 2
Configurations used for simulating development data.

Dataset randomly selecting speakers and utterances
from the TIMIT training set

Noise database 100 Nonspeech Sounds
SNR(dB) �5, 0, 5, 10, 15 and 20

Number of utterance 6006

Table 3
Configurations used for simulating test data.

Dataset randomly selecting speakers and utterances
from the TIMIT test set

Noise database 100 Nonspeech Sounds and NOISEX-92
SNR(dB) �5, 0, 5, 10, 15 and 20

Number of utterance 10086

C. Fan, H. Zhang, J. Yi et al. Applied Acoustics 194 (2022) 108792
4. Dataset and experimental setup

4.1. Dataset

Our experiments are conducted on TIMIT database [39], which
consists of 630 speakers each speaking 10 utterances. The train-
ing, development and test sets are created in the same manner.
In order to acquire the noisy-clean pairs, the training and devel-
opment sets use the 100 Nonspeech Sounds as the noise dataset,
which includes 100 different noise types and can be download
from the website.1

As for the training and development sets, they are generated
by randomly selecting speakers and utterances from the TIMIT
training set. Then they are mixed with the randomly selecting
noise form the 100 Nonspeech Sounds. 6 different signal-to-
noise ratios (SNRs) are used for training and development sets,
which are �5, 0, 5, 10, 15 and 20 dB. As a result, the training
and development sets have 21,726 and 6006 noisy-clean pairs,
respectively. Detailed configuration is listed in Tables 1 and 2.
As for the test set, besides the 100 Nonspeech Sounds, it also uses
another twelve unseen noises, which are from the NOISEX-92
dataset [40]. In addition, the test set is generated by randomly
selecting speakers and utterances from the TIMIT test set, which
are mixed with noises at 6 different SNRs (�5, 0, 5, 10, 15 and
20 dB). As a result, the test set contains total 10,086 noisy-
clean pairs. Detailed configuration is listed in Table 3.

Because the speakers and noises of development set are seen in
the training set. We use the development set as the seen condition
to evaluate different models. Instead, the speakers and NOISEX-92
dataset are unseen in the training set. We use the test set as the
unseen condition.
1 http://web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/HuCorpus.html.

4

4.2. Our proposed SpecMNet model

The sampling rate of all generated waveform is 8000 Hz. We
apply the 129 dimension noisy amplitude as the input feature. As
for the STFT, the length of length hamming window is 32 ms and
the window shift is 16 ms. The clean target amplitude is generated
in the same manner.

http://web.cse.ohio-state.edu/pnl/corpus/HuNonspeech/HuCorpus.html
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As for the pre-enhancement network, there are two BLSTM lay-
ers and have 1024 units for every layer. As for the mask layer, we
apply the ReLU as the activation function. And as for the mend net-
work, there is only one BLSTM layer with 1024 units. And the sig-
moid activation function is used to estimate the mend weight.
Therefore, our proposed SpecMNet contains 3 BLSTM layers with
1024 units, totally.

4.3. Baseline models

For comparison purposes, two types of systems are built as two
baselines in this paper.

� BLSTM: The BLSTM baseline means that we apply the pre-
enhancement network for speech enhancement. Different from
pre-enhancement network, the BLSTM baseline has 3 total
BLSTM layers with 1024 units, which is same as our proposed
SpecMNet method. We use the MSE JMSE as the loss function
of BLSTM baseline.

� BLSTM-SISNR: Compared with the BLSTM baseline, the only dif-
ference of BLSTM-SISNR is the loss function. The loss function of
BLSTM-SISNR baseline contains SI-SNR loss:
J1 ¼ JMSE � aJSI�SNR ð19Þ

In this paper, wee initialize the learning rate of all models are
0.0006. In addition, all models are optimized with the Adam algo-
rithm [41].

4.4. Evaluation metrics

In this paper, to quantitatively evaluate speech enhancement
results, the following objective measures are used: the perceptual
evaluation of speech quality (PESQ) [42] measure, the extend
short-time objective intelligibility (ESTOI) measure [43], the
signal-to-distortion ratio (SDR) measure [35], overall Signal-to-
Noise Ratio (ovlSNR) and Segmental Signal-to-Noise Ratio (segSNR)
[44,45].

The PESQ aims to evaluate the speech quality, which ranges
from �0.5 to 4.5. ESTOI extends from STOI [46] and ranges from
0 to 1, which aims to evaluate the speech intelligibility. SDR is
the blind source separation (BSS) evaluation score. ovlSNR and
segSNR are from 0 to 1. For these evaluation metrics, the higher
scores are, the better performances are.
5. Experimental results

Tables 4, 5, 6, 8 and 7 show the results of PESQ, ESTOI, SDR,
segSNR and ovlSNR for different speech enhancement methods.
‘‘seen” case means that we evaluate different enhancement models
on the development set. And ‘‘unseen” case means that we evalu-
ate different enhancement models on the test set. ‘‘AVG.” means
the average value for all of the test SNR conditions.

5.1. Evaluation of MSE and SI-SNR loss

From Tables 5 and 6, we can find that when the MSE loss is
replaced by the SI-SNR loss, the performance of speech enhance-
ment can be improved for ESTOI and SDR evaluation metrics. More
specifically, compared with BLSTMmodel, the BLSTM-SISNR model
can acquire 1.15% increment in seen ESTOI, 1.05% increment in
unseen ESTOI, 0.82 dB increment in seen SDR and 0.77 dB incre-
ment in unseen SDR for AVG. condition. These results show that
the SI-SNR loss can improve the speech objective intelligibility.
Because the SI-SNR and SDR are the BSS-eval scores. The BLSTM-
5

SISNR model optimizes the SI-SNR directly so that it can improve
the SDR performance. These results indicate that the SI-SNR loss
is beneficial to the speech objective intelligibility and the SDR eval-
uation metric.

From Table 4 (PESQ evaluation metric), we can find that
although the BLSTM-SISNR can acquire better performances than
BLSTM for the AVG. and high SNRs, the BLSTM-SISNR gets worse
results than BLSTM for the low SNRs (�5 and 0 dB). These results
show that for high SNRs, the SI-SNR loss can improve the speech
perceptual quality, but for the low SNRs it has worse performances
than the MSE loss.

However, from Tables 8 and 7 (segSNR and ovlSNR evaluation
metrics) we can find opposite results compared with Table 4. As
for segSNR and ovlSNR evaluation metrics, compared with BLSTM,
the BLSTM-SISNR has worse results for high SNRs and the AVG.
condition. However, the BLSTM-SISNR can acquire better perfor-
mances than BLSTM for low SNRs (�5 and 0 dB) no matter seen
and unseen conditions. These results show that compared with
MSE loss, the SI-SNR loss has a stronger capability to improve
the SNR value of enhanced speech for the low SNRs noisy
condition.

To summarize, from the above experimental results, we can
know that SI-SNR loss and MSE loss have their own advantages
and disadvantages. The SI-SNR loss only aims to optimize the
BSS-eval scores so that leads to the worse performance for segSNR
and ovlSNR evaluation metrics. While the MSE loss leads to gener-
ating over-smoothed spectrum that loses so many fine structures,
which has poor performance for ESTOI and SDR evaluation metrics.
However, whether BLSTM-SISNR or BLSTM model does not solve
the speech distortion problem, which leads to the spectrum con-
taining so many ‘‘leaks” and losing so much important speech
information.
5.2. Comparison of our proposed SpecMNet model with baseline
models

From Tables 4, 5, 6, 8 and 7, we can find that our proposed
SpecMNet model acquires the best performance compared with
baseline models (BLSTM and BLSTM-SISNR) for all SNRs no matter
seen and unseen conditions. More specifically, compared with
BLSTM baseline, our proposed SpecMNet model can get 0.15/0.15
(seen/unseen), 1.86%/1.66%, 1.20/1.12 dB, 1.03/0.94 dB and
0.80/0.73 dB improvements in PESQ, ESTOI, SDR, segSNR and
ovlSNR evaluation metrics for AVG. condition. In addition, com-
pared with BLSTM-SISNR baseline, our proposed SpecMNet model
can acquire 0.09/0.09 (seen/unseen), 0.71%/0.61%, 0.38/0.35 dB,
1.37/1.35 dB and 2.01/1.97 dB improvements in PESQ, ESTOI,
SDR, segSNR and ovlSNR evaluation metrics for AVG. condition.
These results indicate the effectiveness of our proposed method.

Moreover, from these results we can make some valuable
observations.

Firstly, compared with baseline models, our proposed SpecM-
Net model can obtain the best performance for all cases. The reason
is that enhanced speech is always affected by the speech distortion
problem, which leads to the spectrum containing so many ‘‘leaks”
and losing so much very important speech information. However,
speech distortion is harmful to the speech quality and intelligibil-
ity. In order to address the speech distortion problem, our pro-
posed SpecMNet consists of pre-enhancement network and mend
network. The main purpose of SpecMNet is to mend these ‘‘leaks”
by fusing original and pre-enhanced spectrum so that it can
retrieve the lost speech information. Therefore, our proposed
SpecMNet model can acquire the best performance. Meanwhile,
these results prove that our proposed method is effective for
speech distortion problem.



Table 4
The objective results of PESQ for different speech enhancement methods. ‘‘seen” case means that we evaluate different enhancement models on the development set. And
‘‘unseen” case means that we evaluate different enhancement models on the test set. ‘‘AVG.” means the average value for all of the test SNR conditions.

Metric PESQ

Test SNR �5 dB 0 dB 5 dB 10 dB 15 dB 20 dB AVG.

seen Noisy 1.66 1.93 2.22 2.52 2.84 3.16 2.39
BLSTM 2.55 2.78 2.97 3.14 3.30 3.47 3.03

BLSTM-SISNR 2.45 2.76 3.02 3.25 3.45 3.62 3.09
SpecMNet(ours) 2.61 2.88 3.12 3.32 3.50 3.68 3.18

unseen Noisy 1.62 1.91 2.21 2.52 2.84 3.16 2.38
BLSTM 2.50 2.74 2.94 3.12 3.29 3.46 3.01

BLSTM-SISNR 2.40 2.72 3.00 3.23 3.44 3.61 3.07
SpecMNet(ours) 2.55 2.84 3.09 3.30 3.49 3.66 3.16

Table 5
The objective results of ESTOI for different speech enhancement methods. ‘‘seen” case means that we evaluate different enhancement models on the development set. And
‘‘unseen” case means that we evaluate different enhancement models on the test set. ‘‘AVG.” means the average value for all of the test SNR conditions.

Metric ESTOI(%)

Test SNR �5 dB 0 dB 5 dB 10 dB 15 dB 20 dB AVG.

seen Noisy 44.13 55.97 67.90 78.73 87.42 93.44 71.26
BLSTM 68.32 77.01 83.78 88.99 92.91 95.68 84.45

BLSTM-SISNR 69.07 78.29 85.30 90.45 94.07 96.44 85.60
SpecMNet(ours) 69.98 79.26 86.15 91.13 94.54 96.77 86.31

unseen Noisy 43.34 55.11 67.07 78.03 86.90 93.10 70.59
BLSTM 66.25 75.38 82.58 88.18 92.36 95.36 83.35

BLSTM-SISNR 66.67 76.43 83.98 89.60 93.55 96.16 84.40
SpecMNet(ours) 67.51 77.26 84.70 90.18 93.98 96.44 85.01

Table 6
The objective results of SDR for different speech enhancement methods. ‘‘seen” case means that we evaluate different enhancement models on the development set. And ‘‘unseen”
case means that we evaluate different enhancement models on the test set. ‘‘AVG.” means the average value for all of the test SNR conditions.

Metric SDR (dB)

Test SNR �5 dB 0 dB 5 dB 10 dB 15 dB 20 dB AVG.

seen Noisy �4.61 1.94 5.13 10.12 15.12 20.13 7.68
BLSTM 9.67 12.19 14.81 17.58 20.52 23.66 16.41

BLSTM-SISNR 10.54 13.04 15.62 18.38 21.33 24.46 17.23
SpecMNet(ours) 10.87 13.39 15.99 18.77 21.75 24.90 17.61

unseen Noisy �4.61 1.96 5.14 10.12 15.12 20.13 7.68
BLSTM 9.37 12.03 14.74 17.59 20.58 23.75 16.34

BLSTM-SISNR 10.12 12.79 15.50 18.34 21.35 24.54 17.11
SpecMNet(ours) 10.41 13.11 15.84 18.71 21.75 24.95 17.46

Table 7
The objective results of ovlSNR for different speech enhancement methods. ‘‘seen” case means that we evaluate different enhancement models on the development set. And
‘‘unseen” case means that we evaluate different enhancement models on the test set. ‘‘AVG.” means the average value for all of the test SNR conditions.

Metric ovlSNR (dB)

Test SNR �5 dB 0 dB 5 dB 10 dB 15 dB 20 dB AVG.

Noisy �5.00 0.00 5.00 10.00 15.00 20.00 7.50
BLSTM 8.96 11.23 13.58 15.90 18.03 19.79 14.58

BLSTM-SISNR 9.31 11.33 13.17 14.67 15.65 16.13 13.37
seen SpecMNet(ours) 9.90 12.19 14.50 16.72 18.70 20.24 15.38

Noisy �5.00 0.00 5.00 10.00 15.00 20.00 7.50
BLSTM 8.71 11.10 13.51 15.88 18.04 19.82 14.51

BLSTM-SISNR 8.97 11.12 13.07 14.64 15.67 16.18 13.27
unseen SpecMNet(ours) 9.53 11.95 14.35 16.66 18.68 20.25 15.24
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Secondly, from Table 4, we can find that as for PESQ evaluation
metric, the BLSTM gets worse results for high SNRs while the
BLSTM-SISNR has worse results for low SNRs. In addition, from
Tables 8 and 7, we can find that, as for segSNR and ovlSNR evalu-
ation metrics, the BLSTM gets worse performances for low SNRs
while the BLSTM-SISNR has worse performances for high SNRs.
While our proposed SpecMNet model can acquire superior perfor-
6

mances whether low or high SNRs. This is because that SpecMNet
applies the MSE loss at the pre-enhancement network, firstly. But
the MSE loss leads to generating over-smoothed spectrum. In order
to address this problem, SpecMNet utilizes the SI-SNR loss at the
mend network. Finally, the joint training framework is used to
combine these two losses deeply so that it can learn from these
two losses’ strong points and close the gap.



Table 8
The objective results of segSNR for different speech enhancement methods. ‘‘seen” case means that we evaluate different enhancement models on the development set. And
‘‘unseen” case means that we evaluate different enhancement models on the test set. ‘‘AVG.” means the average value for all of the test SNR conditions.

Metric segSNR (dB)

Test SNR �5 dB 0 dB 5 dB 10 dB 15 dB 20 dB AVG.

Noisy �4.64 �2.01 1.11 4.60 8.37 12.29 3.29
BLSTM 3.50 5.18 6.94 8.75 10.55 12.24 7.86

BLSTM-SISNR 4.02 5.53 6.99 8.36 9.59 10.62 7.52
seen SpecMNet(ours) 4.43 6.22 8.02 9.83 11.60 13.25 8.89

Noisy �4.69 �2.05 1.08 4.59 8.37 12.31 3.27
BLSTM 3.29 5.05 6.88 8.76 10.60 12.33 7.82

BLSTM-SISNR 3.71 5.31 6.87 8.32 9.60 10.67 7.41
unseen SpecMNet(ours) 4.11 5.98 7.86 9.75 11.58 13.26 8.76
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In order to show the experimental results more intuitively, we
use three mean opinion score (MOS)-based evaluation metrics
[47]: CSIG, CBAK and COVL, which are from 1 to 5. Where CSIG
measures only the speech distortion. CBAK measures the interfer-
ence of background noise. And COVL measures the overall effect.
Fig. 3 shows the line chart of CSIG, CBAK and COVL for different
speech enhancement methods under different SNRs. Where (a)
shows the CSIG results, (b) shows the CBAK results and (c) shows
the COVL results. From Fig. 3, we can know that although the
BLSTM-SISNR acquires poor performances for low SNRs, our pro-
posed SpecMNet can get comparable results to BLSTM baseline.
In addition, as for the high SNRs, our proposed SpecMNet can
acquire the best performances than baselines. These results sug-
gest that fusing the original and pre-enhanced spectrum to mend
‘‘leaks” is effective for retrieving the lost speech information and
speech distortion problem.

We chose 6 different types of noise, which consists of 3 seen noise
(n3, n4 and n5 in 100 Nonspeech sounds) and 3 unseen noise
Fig. 3. The results of CSIG, CBAK and COVL for different speech enhancement met

Table 9
The objective results of PESQ for different noise types.

Methods

seen

n3 n4 n

Noisy 2.03 2.21 2
BLSTM 2.74 2.80 2

BLSTM-SISNR 2.73 2.78 3
SpecMNet(ours) 2.88 2.92 3

7

(factory1, pink and white in NOISEX-92). Table 9 shows the objective
results of PESQ for different noise types. From Table 9 we can find
that the PESQ performances of seen noise are better than the unseen
noise. This because that the enhanced model is trained by the seen
noise. However, the unseen noise is unknown for the enhanced
model. Our proposed SpecMNet can acquire the best performance
no matter seen or unseen noise than baselines. These results indicate
that our proposed method is effective for speech enhancement.

In addition, from Table 9 we can also find that speech enhance-
ment methods have different performance for different noise
types. For example, as for SpecMNet method, compared with the
noisy input speech, the enhanced speech can acquire 0.75
improvement for the white noise, the pink noise is 0.6 and the fac-
tory1 is 0.43. These results suggest that the enhanced model can
obtain a better performance for the white noise. This is because
that the distinction between speech and white noise is relatively
large. Therefore, the enhanced model can remove the noise very
well.
hods under different SNRs. (a) CSIG results (b) CBAK results (c) COVL results.

PESQ(AVG.)

unseen

5 factory1 pink white

.18 2.31 2.22 1.94

.96 2.65 2.68 2.60

.09 2.67 2.73 2.61

.21 2.74 2.82 2.69
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6. Discussions

The above experimental results show that our proposed SpecM-
Net method by fusing the pre-enhanced and original spectrum to
retrieve the lost speech information could alleviate the speech dis-
tortion quite well and acquire a pretty good performance. In addi-
tion, we can make some valuable observations as follows.

Our proposed SpecMNet method is effective to alleviate the
speech distortion problem and can improve the performance of
speech enhancement. The SpecMNet consists of pre-
enhancement network and mend network. The pre-enhancement
network aims to remove the most of noise signals, but it is affected
by speech distortion, which has so many ‘‘leaks” and loses so much
important speech information. In order to address this problem,
the mend network is applied to fuse the original and pre-
enhanced spectrum by the mend weight. Because the original
spectrum has no ‘‘leaks” and no information lost but the noise sig-
nals. Therefore, we fuse the weighted original spectrum and
weighted pre-enhanced spectrum to mend these ‘‘leaks” and
retrieve the lost speech information so that the SpecMNet can alle-
viate the speech distortion problem.

The loss function of our proposed SpecMNet can learn from theMSE
and SI-SNR losses’ strong points and close the gap. From above experi-
mental results, we can find that MSE and SI-SNR losses have their own
advantages and disadvantages. For example, the MSE loss usually gen-
erates over-smoothed spectrum so that leads to the poor performance
for ESTOI and SDR evaluation metrics. While the SI-SNR loss aims to
optimize the BSS-eval scores, which has poor performance for segSNR
and ovlSNR evaluation metrics. However, our proposed SpecMNet
method can get superior performances for these evaluation metrics.
This is because that we use the MSE loss for the pre-enhancement net-
work and utilize the SI-SNR loss formend network. Then the joint train-
ing framework is applied to combine these two losses. Therefore, the
proposed SpecMNet can fuse these two losses deeply.

In summary, our proposed SpecMNet method could alleviate
the speech distortion quite well. In addition, the loss function of
SpecMNet is beneficial to improve the performance of speech
enhancement.
7. Conclusion

In this paper, in order to address the speech distortion problem,
we propose a spectrum mend network (SpecMNet) for monaural
speech enhancement. Our proposed SpecMNet method includes
two sub-networks, namely pre-enhancement network and mend
network. The pre-enhancement network aims to acquire the pre-
enhanced spectrum and remove the most of noise signals. And
the main task of mend network is to predict mend weights for
pre-enhanced and original spectrums. Because of the speech dis-
tortion, the pre-enhanced spectrum has so many ‘‘leaks” leads to
losing so much speech information. Therefore, we apply the origi-
nal spectrum to mend the pre-enhanced spectrum by adding these
two weighted spectrums. Besides, we fuse the MSE loss and SI-SNR
loss by joint training framework. Experiments on TIMIT + (100
Nonspeech Sounds and NOISEX-92) datasets demonstrate that
our proposed SpecMNet method is effective to alleviate the speech
distortion problem. In the future, we plan to extend our proposed
approach to the complex spectral speech enhancement in order to
avoid phase mismatch problem.
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