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Abstract
Auditory attention decoding (AAD) aims to rec-
ognize the attended speaker based on electroen-
cephalography (EEG) signals in multi-talker en-
vironments. Most AAD methods only focus on
the temporal or frequency domain, but neglect the
relationships between these two domains, which
results in the inability to simultaneously consider
both time-varying and spectral-spatial information.
To address this issue, this paper proposes a dual-
branch parallel network with temporal-frequency
fusion for AAD, named DBPNet, which consists
of the temporal attentive branch and the frequency
residual branch. Specifically, the temporal attentive
branch aims to capture the time-varying features in
the EEG time-series signal. The frequency resid-
ual branch aims to extract spectral-spatial features
of multi-band EEG signals by the residual convolu-
tion. Finally, these dual branches are fused to con-
sider both EEG signals time-varying and spectral-
spatial features and get classification results. Ex-
perimental results show that compared with the best
baseline, DBPNet achieves a relative improvement
of 20.4% with a 0.1-second decision window for
the MM-AAD dataset, but the number of trainable
parameters is reduced by about 91 times.

1 Introduction
In the context of a cocktail party, people possess the ability
to isolate and concentrate on a single sound source within a
noisy, multi-talker environment, a skill commonly referred to
as the cocktail party effect [Haykin and Chen, 2005]. How-
ever, individuals with hearing impairments may reduce or
completely lose the capacity to focus on the specific speaker
amidst background noise. Most existing hearing aids fall
short in addressing the fundamental challenge of pinpointing
the target speaker [Puffay et al., 2023]. According to previ-
ous neuroscience studies, there is a connection between brain
activity and auditory attention [Mesgarani and Chang, 2012].
Decoding auditory attention from brain neural activities is the
auditory attention decoding (AAD) task. Therefore, handling
the cocktail party problem is one of the applications of AAD
practical research [Ciccarelli et al., 2019].

Electroencephalography (EEG) [O’sullivan et al., 2015], as
the primary technology for recording brain activity, several
studies have confirmed the feasibility of EEG used in AAD
[Choi et al., 2013].EEG records the brain’s electrical activity
via scalp-placed sensors, producing a sequence of non-linear
time series signals. Through Fast Fourier Transform (FFT)
[Stone, 1966], the signals are converted from the temporal
domain to the frequency domain. Based on the frequency
ranges, these signals are typically divided into several main
types: delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta
(14–30 Hz) and gamma (31–50 Hz) [Aftanas et al., 2004;
Liu et al., 2017]. Different frequency bands have different
spatial features, which depict different states of the human
body. Numerous methods have been proposed for extracting
EEG features, like differential entropy (DE) [Shi et al., 2013]
and power spectral density (PSD) [Frantzidis et al., 2010].

AAD research primarily focuses on two paradigms:
speaker identification and tracking spatial attention [Puffay
et al., 2023]. Recent advancements in neuroscience have un-
covered connections between neural activities and auditory
detection [Ding and Simon, 2012]. According to conclusions,
some researches employ a stimulus-reconstruction or speech
envelope reconstruction method, which necessitates the use
of clean auditory stimuli as input [O’sullivan et al., 2015;
Cai et al., 2021a]. However, most real-world scenarios are
multi-sound environments. Listeners receive a mixture of
multiple sounds, making it a challenge to obtain clean audi-
tory stimuli. Therefore, our studies focus on using only EEG
signals as input to achieve tracking spatial attention.

Traditional AAD tasks rely on linear methods to process
EEG signals [Geirnaert et al., 2021]. However, these lin-
ear methods often struggle with non-linear mapping relation-
ships, leading to the need for longer decision windows [Mi-
ran et al., 2018]. Previous studies have proven each frequency
band contains different spatial features, which depict different
states of the human body [Zheng and Lu, 2015]. Therefore,
some studies focus on the frequency of EEG signals. They
employ the convolutional neural network (CNN) to decode
from frequency bands and have good performance, extracting
DE values from frequency bands and projecting them onto
2D topological maps [Jiang et al., 2022]. However, it over-
looks the dynamic time-varying features of the EEG signals.
Given that EEG signals are essentially time-series data [Bas-
sett and Sporns, 2017], other studies focus on the temporal as-



pects of EEG signals [Su et al., 2022], introducing the atten-
tion mechanism, which obtains successful results. Although
EEG time-series signals have abundant time-varying infor-
mation, their limited spectral-spatial features in the temporal
domain indicate a weak correlation with human spatial atten-
tion [Wöstmann et al., 2016]. Therefore, it’s necessary to fuse
the temporal and frequency domain to get a more comprehen-
sive feature and direct concatenation with two features is an
effective method. However, there is currently no work ex-
ploring the fusion of temporal and frequency domain features
in AAD. Without any one of the temporal and frequency do-
main information, EEG features cannot be comprehensively
represented, which means its time-varying or spectral-spatial
information can not be considered simultaneously.

To address this issue, this paper proposes a novel dual-
branch parallel network with temporal and frequency fusion
(DBPNet) for AAD, which comprehensively considers both
temporal and frequency domains and employs feature fu-
sion to exploit time-varying and spectral-spatial features si-
multaneously. Specifically, our network is achieved by two
branches and one module: (1) Temporal Attentive Branch.
The temporal attentive branch focuses on the temporal corre-
lations within EEG signals different from concentration on
the channels correlations in previous studies. It can cap-
ture the dynamics of time-varying information in EEG time-
series signals as temporal features. (2) Frequency Residual
Branch. The frequency residual branch employs residual con-
volution rather than repeated stacking of convolutional lay-
ers to extract spectral-spatial features as frequency features
from multi-band EEG signals (3) Feature Fusion & Classi-
fier. These dual branches are fused to simultaneously con-
sider the temporal and frequency domain features and input
them into a classifier, which predicts the direction class la-
bel by mapping the fused features into label space. Further-
more, we assess the decoding performance of the DBPNet
in three datasets: KUL, DTU and MM-AAD. Especially, in
MM-AAD, the proposed DBPNet with smaller trainable pa-
rameters achieves 20.4% relative improvements over the best
baseline in terms of 0.1-second decision windows. These ex-
perimental results indicate that DBPNet can effectively ex-
tract and fuse the temporal and frequency domain features of
EEG signals. The major contributions of our paper are out-
lined as follows:

• We propose a novel dual-branch network for AAD,
which consists of a temporal attentive branch and a fre-
quency residual branch. Therefore, the proposed method
can make full use of the time-varying and spectral-
spatial information simultaneously.

• The DBPNet, compared to the best baseline, demon-
strates a relative improvement of approximately 20.4%
for 0.1-second decision window in the MM-AAD
dataset. Additionally, it achieves a significant reduction
in trainable parameters, approximately 91 times fewer
than the best baseline.

2 Our Proposed DBPNet Method
Previous researches on EEG-based AAD only concentrate on
either the temporal domain or the frequency domain, neglect-

ing the advantages of the fusion of two domain features. To
address this issue, we propose DBPNet, as shown in Figure 1,
a novel EEG-based model with temporal-frequency domain
fusion. It includes a temporal attentive branch (TABNet) that
learns time-varying features from EEG signals [Vaswani et
al., 2017], a frequency residual branch (FRBNet) that extracts
spectral-spatial features from the frequency domain, along
with a feature fusion and classifier module that synthesizes
these two features and get final classification results.

Employing a conventional method to split EEG data into
moving windows, we can get a series of decision windows.
Each decision window contains a small duration of EEG sig-
nals, collectively represented by R = [r1, . . . , ri, . . . , rT ] ∈
RN×T , forming a N×T matrix. Here, N denotes the number
of EEG channels and T represents the length of the decision
window, so ri ∈ RN×1 means EEG data with N channels at
the i-th decision window.

2.1 Temporal Attentive Branch
Previous studies have shown different individuals have varia-
tions in response to the same stimuli [Deng et al., 2020; Bed-
nar et al., 2017; Golumbic et al., 2013], which may be caused
by their distinct physiology and psychology [Viswanathan et
al., 2019; Choi et al., 2014]. During listening to the audi-
tory stimuli, an individual’s attention varies in responding
to the content of auditory attention [Jones and Boltz, 1989;
Jones et al., 2002]. The transformer encoder can dynamically
allocate attention weights to capture the time-varying infor-
mation from the EEG signals. On this basis, we implement a
three-step process to extract temporal features.

Previous studies have shown that the common spatial pat-
tern (CSP) algorithm [Geirnaert et al., 2020] performs ex-
cellently in addressing brain-computer interface tasks. So
firstly, before processing EEG signals in DBPNet, we ap-
ply the CSP algorithm to enhance the signal-to-noise ratio
of raw signals [Ramoser et al., 2000; Lotte and Guan, 2010;
Cheng et al., 2020],

E = CSP (R) (1)

where CSP (·) is representation of the CSP algorithm, E ∈
RN×T representing processed EEG signal.

Secondly, we employ the transformer encoder, as shown
in Figure 1. Considering the change of temporal signal in
EEG data, the transformer encoder [Vaswani et al., 2017] can
dynamically allocate weights and encode the raw EEG signal
E. It can be formulated as follows:

S = TransformerEncoder(E) (2)

where TransformerEncoder(·) denotes transformer en-
coder algorithm, S is encoded EEG data through transformer
encoder and S ∈ RN×T has the same shape as E.

Finally, we aggregate EEG signals S through a 1D convo-
lution layer along with an adaptive average pooling layer to
get average feature values,

P = AdaptiveAvgPool(relu(Conv(S))) (3)

where Conv(·) represents the convolutional layer
along with the rectified linear unit function relu(·).



Figure 1: An overview of the DBPNet, containing a dual-pathway temporal-frequency fusion approach and a classifier to get classification
results. (a) is the temporal attentive branch, consisting of a transformer encoder layer, a 1D convolutional layer, an adaptive average pooling
layer and fc layers, dedicated to the extraction of temporal domain features. (b) is the frequency residual branch, consisting of a 3D convo-
lutional layer, a max pooling layer, multi-band fusion residual blocks and an adaptive average pooling layer, focusing on the extraction of
frequency domain features. (c) is the feature fusion and classifier, serving to get final detection results through direct concatenating.

AdaptiveAvgPool(·) denotes an adaptive average pooling
layer. P ∈ R1×N is the collection of average feature values.
Then P is employed two fully-connected (fc) layers to
extract temporal features, as follows:

F1 = relu(w2(σ(w1P + b1)) + b2) (4)

where w1 and w2 are the parameters of two fc layers’
weights, b1 and b2 are the biases of fc layers. σ(·) is the sig-
moid activation function. F1, temporal features, is a N size
vector, extracted from EEG signals in the temporal domain.

2.2 Frequency Residual Branch
Prior research has demonstrated that multi-band DE features
can significantly improve the accuracy of AAD [Jiang et
al., 2022]. Our method involves extracting DE values from
each band, projecting them onto 2D topological maps to uti-
lize their topological patterns [Snyder, 1987] and extracting
spectral-spatial features through multi-band fusion residual
blocks [He et al., 2016]. Specifically, we implement a three-
step process to extract frequency features.

Firstly, the EEG data is decomposed into five frequency
bands [Liu et al., 2017]. Regarding each frequency band con-
taining different spatial characteristics, we extract DE values
from five frequency bands and then project them onto five 2D
planes. Therefore, there is a M = [m1, . . . ,mi, . . . ,m5] ∈
RN×N×5×1 concatenating five 2D planes, where N is the
number of grids in a 2D plane mi ∈ RN×N×1. mi repre-
sents a 2D topological plane.

Secondly, we employ a convolutional layer followed by a
max pooling layer to process the whole 3D topological collec-
tion M as a one-channel feature. This step aims to extract the
significant information from the topological collection M .

U = Max(tanh(Conv(M))) (5)

where Conv(·) denotes the 3D convolutional layer,
Max(·) denotes a max pooling layer and tanh(·) denotes the
hyperbolic tangent (tanh) function. The processed EEG sig-
nals are represented by U ∈ RN×N×K×C , where K denotes
the number of frequency bands and C denotes the channel
number.

Finally, as illustrated in Figure 1, we implement multi-band
fusion residual blocks to fuse DE features across different
frequency bands. These blocks consist of 3D convolutional
layers and 3D batch normalization layers. This step fuses
all spectral-spatial information contained within topological
maps collection U . Additionally, we stack N such multi-band
fusion residual blocks to augment the model’s capability in
extracting frequency features, as follows:

O(0) = ConvLayer(ResBlock(U))

O(i) = ConvLayer(ResBlock(O(i−1)))
(6)

where ConvLayer(·) denotes 3D convolutional layer
along with 3D batch normalization layer, ResBlock(·) rep-
resents the multi-band fusion residual block. And O(i) ∈
RN×N×K×C means the i-th hidden output. What is different
from the previous multi-band fusion residual blocks is that
O(N−1) is employed by a 3D convolution layer to reduce its
dimensionality following batch normalization. An adaptive
average pooling layer extracts average features, as follows:

O(N) = relu(ConvLayer(O(N−1))) (7)

F2 = relu(AdaptiveAvgPool(O(N))) (8)
where ConvLayer(·), consistent with its previous usage,

represents a 3D convolution layer with a 3D batch normaliza-
tion layer, relu(·) means the rectified linear unit function and
O(N) denotes the N -th hidden output of the model. In Eq.



(8), AdaptiveAvgPool(·) refers to an adaptive average pool-
ing layer. F2, frequency features, presents a feature vector of
size N , extracted from EEG signals in frequency domain.

2.3 Feature Fusion & Classifier
To fuse the temporal-frequency domain features, we concate-
nate them into a new vector. Then through a linear transfor-
mation, the model derives the final classification result.

Firstly, we concatenate two vectors to get a new dual-
domain feature vector, as follows:

F = [F1, F2] (9)

where F is the new vector concatenating F1 temporal fea-
tures and F2 frequency features. Then, we employ a fc layer
to get the final result, as follows:

predict = wF + b (10)

where w and b are two parameters of the fc layer. predict
is the predicted direction label. In the training stage, we apply
the binary cross-entropy function to update the parameter.

L = − 1

N

N∑
i=1

[yi · logQi + (1− yi) · log(1−Qi)] (11)

where yi means the ground-truth label of i-th decision win-
dow, N means the number of samples, Qi is the correspond-
ing possibility of predict with softmax function processing.

3 Experiments
3.1 AAD Dataset
We extensively evaluate the proposed method in three
datasets, namely KUL [Das et al., 2019; Das et al., 2016],
DTU [Fuglsang et al., 2018; Fuglsang et al., 2017] and MM-
AAD. KUL and DTU are widely used publicly available
datasets that contain EEG data for only auditory stimulus
scenes. MM-AAD is our self-built dataset for simulating real
scenes, which contains EEG data of the audio-only scene and
the audio-visual scene.

1) KUL: In this study, 16 subjects with normal hearing
listen to four Dutch short stories in a soundproof room. Nar-
rated by three male Flemish speakers, the audio is delivered
through in-ear headphones, filtered at 4 kHz and set at 60 dB.
The study features ’dichotic’ (dry) and ’head-related transfer
function’ (HRTF) listening scenarios, focusing on one of two
overlapping male voices from either 90◦ left or right. Each
subject completes 8 trials, each lasting 6 minutes, in vary-
ing order. The 64-channel EEG data is recorded using the
BioSemi ActiveTwo system at an 8196 Hz sampling rate.

2) DTU: In this study, 18 subjects with normal hearing lis-
ten to Danish audiobooks through ER-2 earphones at 65 dB
and 48 kHz. The audiobooks, with varied reverberation levels
and narrated by a male and female speaker, simulate different
environments. Subjects focus on one voice of two competing
voices played concurrently at a 60◦ orientation. They com-
plete 60 trials, each 50 seconds long, with changing sound
streams and narrator genders. EEG data is captured from 64

Dataset Scene Subjects Duration Stimulus
(minutes) Language

KUL audio-only 16 48 Dutch
DTU audio-only 18 50 Danish

MM-AAD audio-only 50 55 Chinese
audio-visual 50 55 Chinese

Table 1: Details of three datasets used in experiments

channels using the BioSemi ActiveTwo system at a 512 Hz
sampling rate, in line with the 10/20 international system.

3) MM-AAD: This dataset is a multi-modal AAD dataset
constructed by ourselves, which well simulates the multi-
modal input of visual and auditory in real scenes. This dataset
contains EEG recordings from 50 subjects (34 males and 16
females) with normal hearing, tested with audio-only and
audio-visual stimuli. There are 40 stories chosen from a clas-
sical Chinese short story collection, narrated by male and fe-
male voices. Subjects should pay attention to stories playing
from their left or right spatial direction. Each subject com-
pletes 20 trials of approximately 165 seconds, with varying
audio stream locations and narrator genders. EEG data is cap-
tured from 32 channels at a 4000 Hz sampling rate, following
the 10/20 international system.

3.2 Data Preprocessing
To maintain fairness in experiments with different EEG
datasets, specific preprocessing is applied to each. For the
KUL dataset, EEG data are re-referenced to mastoid elec-
trodes’ average response, bandpass filtered between 0.1Hz
and 50 Hz and downsampled to 128 Hz. The DTU dataset is
filtered to remove 50Hz line noise, downsampled to 128 Hz
and high-pass filtered at 0.1 Hz. Eye artifacts are removed
using joint decorrelation and data are re-referenced to the av-
erage EEG channel response [Fuglsang et al., 2017]. For the
MM-AAD, data are bandpass filtered from 0.1 Hz to 50 Hz,
with 50 Hz noise removed by a notch filter and downsampled
to 128 Hz. Eye artifacts are eliminated and independent com-
ponent analysis (ICA) is applied for further noise removal.

The performance of the proposed model is evaluated under
the three different sliding decision window lengths.

3.3 Baseline Methods
We compare our proposed DBPNet with the two following
baselines:

• SSF-CNN [Cai et al., 2021b]: A CNN based on alpha
power neural signals to extract spectral-spatial features
for AAD.

• MBSSFCC [Jiang et al., 2022]: A CNN network and
convolutional-long-short-term-memory (ConvLSTM) to
extract spectro-spatial-temporal features from multiple
frequency bands for AAD.

3.4 Network Configuration
Our primary task in AAD involves determining the direc-
tion of sound (left or right), essentially a binary classification
problem. The resulting accuracy is defined as the percentage



Branch Layers Value

TABNet
Transformer encoder layer 1

Convolution kernel 64×7
fc layer 2

FRBNet

Convolution kernel 32×1×7×7
Max pool kernel 1×3×3
Residual blocks 3

Convolution kernel 4×1×1
Adaptive average pool output 1×1×1

Table 2: The detailed parameters of layers in TABNet and FRBNet.

of the correct classification result divided by the total num-
ber of classifications. We refine the model parameters by re-
ducing the loss value and evaluate the effectiveness using the
accuracy percentages derived from the test set.

Taking the 1-second decision window in KUL as an exam-
ple, after data preprocessing, there is a total of 5,752 decision
windows per subject, including 4,658 decision windows for
training and 576 decision windows for testing.

For TABNet, 1-second EEG data with 128 samples and 64
channels are denoted as R ∈ R128×64. Firstly, the data is em-
ployed by the CSP algorithm. And, through the transformer
encoder with self-attention mechanism, we can get the en-
coded data S ∈ R128×64. Then there is a convolutional layer
and two fc layers (input: 64, hidden: 16, output: 4) to ex-
tract temporal features F1 ∈ R1×4 from S. For FRBNet, we
extract DE values from five frequency bands. Then through
3D to 2D projection method, we can get five 2D planes, each
of which can be denoted as mi ∈ R32×32×1 and concatenate
them to a 3D map collection M = [m1,m2,m3,m4,m5] ∈
R32×32×5×1. Furthermore, after multi-band fusion residual
blocks and adaptive average pooling processing, we can get
frequency features F2 ∈ R1×4. Finally, in the feature fu-
sion and classifier stage, we concatenate temporal feature Fi

and frequency feature F2 to a new vector F ∈ R1×8. Then,
through a fc layer (input: 8, output: 2), we can get the final
classification result.

The detailed values of layers in TABNet and FRBNet can
be found in Table 2. All studies are performed using PyTorch.
We implement dropout layers and the early stopping scheme.

4 Results
4.1 Auditory Attention Analysis
To evaluate the proposed model’s decoding performance in
AAD, we compare DBPNet with other AAD models for three
decision windows, detailed in Table 3. We reproduce results
for available models and cite the results from the correspond-
ing papers for not open ones.

DBPNet showcases strong performance in KUL, DTU
and MM-AAD datasets. In KUL, the accuracy is from
87.1% (SD: 6.55%) for 0.1-second to 96.5% (SD: 3.50%)
for 2-second and in DTU from 75.1% (SD: 4.87%) for 0.1-
second to 86.5% (SD: 5.34%) for 2-second. In MM-AAD,
the detection accuracy is from 91.4% (SD: 4.63%) for 0.1-
second to 92.5% (SD: 4.59) for 2-second in the audio-only
scene and from 92.1% (SD: 4.47%) for 0.1-second to 93.4%

(SD: 4.86%) for 2-second in the audio-visual scene. Their
accuracy increases consistently with longer decision win-
dows, aligning with previous studies [Jiang et al., 2022;
Cai et al., 2023b; Cai et al., 2023a].

Expanding on initial observations, it’s clear that the accu-
racy of classification from the DTU is approximately 11%
lower than those from the KUL, a trend echoed in previ-
ous studies [Jiang et al., 2022; Cai et al., 2023b; Cai et al.,
2023a]. This discrepancy is influenced by various factors.
(1) The orientation of auditory stimuli. In KUL, the speech
stimuli originate from 90◦ left and 90◦ right directions, but
in DTU, 60◦ to the left and right (2) The absence of ambient
reverberation. The DTU includes varying levels of room re-
verberation, whereas the KUL dataset does not. (3) The gen-
der of speakers. The KUL exclusively includes male speech
stimuli, but the DTU includes both male and female speakers.

Besides, under the evaluation of all models in MM-AAD,
the accuracy in the audio-visual scene is commonly higher
than the accuracy in the audio-only scene, which shows that
vision can aid in accurately identifying the source of sound.

4.2 Ablation Study
In the ablation study, we compare two single branches (TAB-
Net and FRBNet) with DBPNet. Both experiments are evalu-
ated under identical conditions to those of preceding studies.
The results of the ablation study are displayed in Table 3.

In KUL, TABNet’s accuracy notably increases from 82.5%
(SD: 6.64%) for 0.1-second to 93.5% (SD: 5.41%) for 2-
second, for FRBNet, from 80.4% (SD: 7.08%) for 0.1-second
to 89.5% (SD: 8.16) for 2-second. Both accuracy of the two
branches is lower than DBPNet’s results, from 87.1% (SD:
6.55%) for 0.1-second to 96.5% (SD: 3.50%) for 2-second.
As shown in Table 3 and Figure 2, the trends are similar
in DTU. Besides, in MM-AAD, the detection accuracy of
TABNet is improved from 90.9% (SD: 4.38%) for 0.1-second
to 91.9% (SD: 4.93%) for 2-second in the audio-only scene
and from 91.4% (SD: 4.88) for 0.1-second to 92.4% (SD:
5.24%) for 2-second in the audio-visual scene. FRBNet has
the same trend as TABNet in both scenes. Similar to pre-
vious results of DBPNet, the decoding accuracy of single-
branch networks in audio-visual scenes is higher than net-
works in audio-only scenes. A comparative analysis of DBP-
Net against these single-branch networks reveals its consis-
tent superiority across three datasets, displaying a notable av-
erage 5.73% relative improvement in KUL, 7.42% in DTU,
8.11% in the audio-only scene of MM-AAD and 7.27% in
audio-visual scene of MM-AAD, which further underscores
our DBPNet effectively fuses temporal and frequency fea-
tures to improve the decoding performance of AAD.

5 Discussion
5.1 Comparative Study
We compare our proposed DBPNet with the other six models
for AAD classification, as shown in Table 3. The results show
our DBPNet achieves state-of-the-art performance and proves
the effectiveness of temporal-frequency fusion.

In DTU, for 0.1-second, DBPNet achieves respectively rel-
ative improvements of 32.5%, 14.3%, 3.59%, 20.2% and



Dataset Scene Model Decision Window
0.1-second 1-second 2-second

KUL audio-only

CNN [Vandecappelle et al., 2021] 74.3 84.1 85.7
STAnet [Su et al., 2022] 80.8 90.1 91.4

BSAnet [Cai et al., 2023a] - 93.7 ± 4.02 95.2 ± 3.08
SSF-CNN* [Cai et al., 2021b] 76.3 ± 8.47 84.4 ± 8.67 87.8 ± 7.87

MBSSFCC* [Jiang et al., 2022] 79.0 ± 7.34 86.5 ± 7.16 89.5 ± 6.74
DBPNet (ours) 87.1 ± 6.55 95.0 ± 4.16 96.5 ± 3.50

DTU audio-only

CNN [Vandecappelle et al., 2021] 56.7 63.3 65.2
STAnet [Su et al., 2022] 65.7 71.9 73.7

EEG-Graph Net [Cai et al., 2023b] 72.5 ± 7.41 78.7 ± 6.47 79.4 ± 7.16
BSAnet [Cai et al., 2023a] - 83.1 ± 6.75 85.6 ± 6.47

SSF-CNN* [Cai et al., 2021b] 62.5 ± 3.40 69.8 ± 5.12 73.3 ± 6.21
MBSSFCC* [Jiang et al., 2022] 66.9 ± 5.00 75.6 ± 6.55 78.7 ± 6.75

DBPNet (ours) 75.1 ± 4.87 83.9 ± 5.95 86.5 ± 5.34

MM-AAD

audio-only
SSF-CNN* [Cai et al., 2021b] 56.5 ± 5.71 57.0 ± 6.55 57.9 ± 7.47

MBSSFCC* [Jiang et al., 2022] 75.3 ± 9.27 76.5 ± 9.90 77.0 ± 9.92
DBPNet (ours) 91.4 ± 4.63 92.0 ± 5.42 92.5 ± 4.59

audio-visual
SSF-CNN* [Cai et al., 2021b] 56.6 ± 3.82 57.2 ± 5.59 58.2 ± 6.39

MBSSFCC* [Jiang et al., 2022] 77.2 ± 9.01 78.1 ± 10.1 78.4 ± 9.57
DBPNet (ours) 92.1 ± 4.47 92.8 ± 5.94 93.4 ± 4.86

Table 3: AAD accuracy(%) achieved by the proposed DBPNet in KUL, DTU and MM-AAD, compared with other models for three decision
windows (0.1-second, 1-second, 2-second). ”-” means there are no corresponding experiments conducted or no results in the corresponding
paper. The results of ”*” marked baseline models have been reproduced.

(a) TABNet-DBPNet (b) FRBNet-DBPNet

Figure 2: AAD average accuracy(%) of the ablation study across all
subjects in DTU. (a) represents the box map of TABNet and DBP-
Net average accuracy. (b) represents the box map of FRBNet and
DBPNet average accuracy.

12.3% compared with CNN, STAnet, EEG-Graph Net, SSF-
CNN and MBSSFCC. For 1-second, the relative improve-
ments are 32.5%, 16.7%, 6.61%, 0.96%, 20.2% and 11.0%,
compared with CNN, STAnet, EEG-Graph Net, BSAnet,
SSF-CNN and MBSSFCC. In addition, the relative improve-
ments, compared with those six models, are 32.7%, 17.4%,
8.94%, 1.05%, 18.0% and 9.91%. Similarly in KUL and
MM-AAD, the relative improvements of DBPNet are higher
than other AAD models. Especially in MM-AAD, DBPNet
achieves 20.4% relative improvement for 0.1-second, com-
pared with the best baseline. These results highlight DBP-
Net’s effectiveness and feasibility of temporal and frequency
domain extraction and fusion under different datasets.

5.2 Ablation Analysis
DBPNet’s success validates the effectiveness of the temporal-
frequency fusion strategy. The temporal attentive branch ex-
tracts temporal features and the frequency residual branch ex-
tracts spectral-spatial features. Both branches can obtain cor-
responding features and are fused effectively.

Effects of TABNet
Previous studies have shown there is a rhythmic relationship
between neural activities and external stimuli [Fiebelkorn and
Kastner, 2019]. Therefore, there is a certain connection be-
tween EEG signals, with some signals being more valuable
for AAD. The transformer encoder can learn weights from
EEG signals and encode them automatically. In Figure 3(a)-
(c), EEG signals at different times have different weighted
relationships. Especially in Figure 3 (b),(c), obvious vertical
strips confirm partial signals hold higher value for tracking
spatial attention. However, for Figure 3(a), strips look in-
significant suggesting limitations in capturing effective EEG
signals, which possibly be caused by the latency of the human
brain [Power et al., 2012]. Overall, the attention mechanism
of the temporal attentive branch can automatically discover
the time-varying information from EEG time-series signals.

Effects of FRBNet
As shown in Table 3 and Table 4, the classification accu-
racy of FRBNet in the KUL, DTU and MM-AAD datasets
matches that frequency-focused model: SSF-CNN [Cai et al.,
2021b] and MBSSFCC [Jiang et al., 2022]. The performance
suggests that FRBNet with multi-band fusion residual blocks
can effectively extract spectral-spatial features through multi-
ple frequency bands of EEG signals [Wöstmann et al., 2016].



Dataset Scene Model Decision Window
0.1-second 1-second 2-second

KUL audio-only
TABNet 82.5 ± 6.64 91.2 ± 5.60 93.5 ± 5.41
FRBNet 80.4 ± 7.08 87.5 ± 7.68 89.5 ± 8.16

DBPNet (ours) 87.1 ± 6.55 95.0 ± 4.16 96.5 ± 3.50

DTU audio-only
TABNet 72.9 ± 5.34 76.8 ± 6.25 79.0 ± 6.68
FRBNet 70.4 ± 5.86 77.8 ± 8.11 79.0 ± 8.27

DBPNet (ours) 75.1 ± 4.87 83.9 ± 5.95 86.5 ± 5.34

MM-AAD

audio-only
TABNet 90.9 ± 4.38 91.2 ± 5.34 91.9 ± 4.93
FRBNet 77.4 ± 9.49 80.2 ± 10.1 81.3 ± 10.1

DBPNet (ours) 91.4 ± 4.63 92.0 ± 5.42 92.5 ± 4.59

audio-visual
TABNet 91.4 ± 4.88 92.0 ± 5.04 92.4 ± 5.24
FRBNet 79.2 ± 9.37 82.5 ± 9.01 83.3 ± 9.88

DBPNet (ours) 92.1 ± 4.47 92.8 ± 5.94 93.4 ± 4.86

Table 4: AAD accuracy(%) achieved by the ablation study in KUL, DTU and MM-AAD using DBPNet. TABNet is the network only
containing a temporal attentive branch. FRBNet is the network only containing a frequency residual branch.

(a) (b) (c)

Figure 3: Heat maps of average attention weights using DBPNet across all subjects for three decision windows in DTU. Each row represents
the attention weights of a specific EEG signal in the sequence with all signals. (a) The average attention weights for 0.1-second. (b) The
average attention weight for 1-second. (c) The average attention weight for 2-second.

Model Trainable Parameters
SSF-CNN [Cai et al., 2021b] 4.21M

MBSSFCC [Jiang et al., 2022] 83.91M
DBPNet (ours) 0.91M

Table 5: The number of trainable parameters of DBPNet and two
open-source models. ”M” denotes million, equal to 106.

5.3 Computational Cost
Table 5 compares the parameter counts of DBPNet with SSF-
CNN [Cai et al., 2021b] and MBSSFCC [Jiang et al., 2022],
revealing that DBPNet requires 0.91M trainable parameters
in total, approximately 3.6 times fewer than SSF-CNN and
91 times fewer than MBSSFCC. It demonstrates that FRB-
Net reduces the number of trainable parameters of convolu-
tion networks in AAD. This stark reduction in computational
cost makes DBPNet highly suitable for low-power devices
like hearing aids.

6 Conclusion
In this paper, to address the lack of work on fusion between
the temporal and frequency domains in AAD, we propose the

DBPNet, a novel dual-branch parallel network with temporal-
frequency fusion. The model utilizes a dual-branch approach
to parallelly extract features from the temporal and frequency
domains. For the temporal attentive branch, by incorporat-
ing the transformer encoder, extract time-varying informa-
tion from EEG time-series signals as temporal features. For
the frequency residual branch, we employ multi-band fusion
residual blocks to extract spectral-spatial features from multi-
band EEG signals as frequency features. Finally, through the
fusion of temporal-frequency features, we can obtain com-
prehensive EEG features that contain both time-varying and
spectral-spatial information and then get the classification re-
sults. Our evaluation is conducted in three datasets: KUL,
DTU and MM-AAD. Especially in MM-AAD, our DBPNet
achieves 20.4% relative improvement for 0.1-second decision
windows, but trainable parameter counts are reduced by about
91 times, compared with the best baseline. Experimental re-
sults show that DBPNet achieves the effective extraction and
fusion of temporal-frequency domain features. For further
study, we will explore a more effective strategy of temporal-
frequency feature fusion and use GNN or other neural net-
works to further improve the performance of AAD.
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