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ABSTRACT
Automatic speech depression level prediction (SDLP) is a
very challenging problem in affective computing. There are
many studies that have acquired quite good performances for
SDLP. However, most of the input speech features of these
studies are based on the amplitude spectrogram, which loses
the phase spectrogram information. Therefore, these speech
features may lose some important information related to de-
pression. In order to make full use of speech information, this
paper proposes a complex squeeze-and-excitation network
(CSENet) for SDLP. The complex spectrogram is used as
the input speech feature, which contains both amplitude and
phase spectrogram. In addition, to acquire a discriminative
feature, the squeeze-and-excitation residual network is em-
ployed to extract deep speech feature. Finally, the attentive
temporal pooling is utilized to dynamically select more im-
portant information according to the attention mechanisms.
Experimental results on the AVEC 2013 and AVEC 2014
datasets prove the effectiveness of our proposed method.
As for the mean absolute error (MAE) evaluation metric on
AVEC 2013, our proposed method acquires state-of-the-art
performance.
Index Terms: speech depression level prediction, complex
spectrogram, SENet, attentive temporal pooling

1. INTRODUCTION

Depression is a common mental disorder, which makes peo-
ple feel of sadness for a long time and deprives them of the
joy of life. More seriously, depression endangers human
health with self-mutilation and suicide [1]. Early diagnosis
and treatment are very helpful for the cure of depression.
Therefore, automatic depression detection is necessary to
assist doctors in diagnosis.

Many works have shown that speech signals can reflect
people’s emotion and stress [2, 3]. In addition, physiologi-
cal studies have also shown that speech signals are different
between the depressed and normal individuals [4]. Based on
the above research results, many works have been proposed
to predict the depression level based on the speech signals
[5, 6, 7, 8, 9, 10].

In order to improve the performance of speech depres-
sion level prediction (SDLP), there are so many speech fea-
tures. For example, in [6], authors find that the Mel-frequency
cepstral coefficient (MFCC) is a discriminative acoustic fea-
ture. Therefore, they apply the MFCC for SDLP and ac-
quire a good performance. Besides the MFCC, in [10], au-
thors use the acoustic low-level descriptors (LLDs) and 3D
log Mel spectrograms for SDLP. In addition, in [7], authors
utilize the pre-trained deep learning network to extract deep
speech features, which are used for SDLP. Experimental re-
sults show that these features can improve the prediction per-
formance. However, these above features are based on the
amplitude spectrogram discard phase information. The phase
spectrogram may contains much important information for
SDLP. And many studies have shown that the phase spectro-
gram is very important for the speech quality and intelligi-
bility [11, 12]. Therefore, it is unreasonable to abandon this
information.

To address the above problem, this paper proposes a com-
plex squeeze-and-excitation network (CSENet) for SDLP,
which uses the complex spectrogram as the input feature.
The complex spectrogram contains all of the speech informa-
tion both amplitude and phase spectrogram. Therefore, we
apply this feature to make full use of the speech information
so that it can improve the prediction accuracy. In addition, to
acquire a discriminative features for SDLP, the squeeze-and-
excitation residual network (SE-ResNet) [13, 14] is applied
to extract the deep speech features. Finally, motivated by
[15, 16], we utilize the attentive temporal pooling to acquire
long-term dependencies for low-dimensional speech repre-
sentations and dynamically select more important informa-
tion according to the attention mechanisms. The visualization
results show that the attentive temporal pooling is very effec-
tive for discriminate different depression levels. The main
contributions of this study can be summarized as follows:

• We propose a novel CSENet with attentive temporal
pooling for SDLP.

• To be our best knowledge, this is the first work to apply
the complex spectrogram for SDLP.

• The experimental results on the Audio/Video Emotion
Challenge (AVEC) 2013 [17] and AVEC2014 [18] in-
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Fig. 1. The schematic diagram of our proposed CSENet method for SDLP. The CSENet consists of complex spectrogram, deep
speech feature extraction and attentive temporal pooling.

dicate the superiority of our proposed method. In ad-
dition, as for mean absolute error (MAE) evaluation
metric on AVEC2013, our proposed method acquires
state-of-the-art performance.

2. OUR PROPOSED CSENET METHOD

Fig. 1 shows the schematic diagram of our proposed CSENet
method for SDLP. From Fig. 1 we can find that the complex
spectrogram is used as the input feature of CSENet. Then the
SE-ResNet is applied to extract discriminative deep speech
features. After SE-ResNet, frequency is shrunk to a lower
dimension. Then we use another two convolution neural net-
work (CNN) layers to further compress the frequency channel
to one dimension. Finally, the attentive temporal pooling is
utilized to acquire long-term dependencies.

2.1. Complex Spectrogram
In order to make full use of the speech information both am-
plitude and phase spectrogram, we explore the complex spec-
trogram as the input feature of SDLP. Firstly, the time domain
speech signals x[k] is converted into time-frequency domain
by the short-time Fourier transformation (STFT):

Real[t, f ] + i ∗ Imag[t, f ] = STFT (x[k]) (1)

where STFT denotes the function of STFT, Real and Imag
are the corresponding real and imaginary part, respectively. t
is the index of time frame and f is the index of frequency bin.
k is the time index of speech signals.

Then the real and imaginary part of STFT are stacked to-
gether as the complex spectrogram X:

X = stack(Real[t, f ], Imag[t, f ]) ∈ R2×T×F (2)

where the stack(∗) means the stack operation.

2.2. Deep Speech Features Extraction

Because the SE-ResNet [13] can explicitly model the inter-
dependencies between the channels of its convolutional fea-
tures so that it can improve the quality of deep speech rep-
resentations. In addition, it can automatically obtain the im-
portance of each feature channel, and then improve the useful
features according to this importance and suppress the fea-
tures that are not useful to the current task. Therefore, the
SE-ResNet is used as the extractor of deep speech features to
acquire discriminative acoustic features.

The SE block is a computational unit and shown in Fig. 1.
It firstly uses the global pooling (GP) to squeeze the input
vector so that acquires the global information embedding.

zc = FGP (uc) (3)

where uc is the c-th channel input vector U = [u1,u2, ...,uC ],
which is generated by the convolution operation from the
complex spectrogram. The FGP means the GP operation.
z = [z1, z2, ..., zC ] ∈ RC and zc is the c-th element of z.

Then two fully-connected (FC) layers are applied to make
full use of the aggregated information by the squeeze opera-
tion and fully capture channel-wise dependencies.

s = σ(W2δ(W1z)) (4)

where W1 and W2 are the weight matrix of these two FC
layers. In addition, the δ and σ denote the ReLU and sigmoid
function, respectively.

Finally, the scale operation is used to acquire the final out-
put of the SE block:

x̃c = Fscale(uc, sc) = scuc (5)

where X̃ = [x̃1, x̃2, ..., x̃C ] and Fscale(uc, sc) means the
channel-wise multiplication.
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After SE-ResNet, the frequency of input vector is shrunk
to a lower dimension. In order to acquire the deep speech fea-
ture with only the time dimension, we use another two con-
volution neural network (CNN) layers to further compress the
frequency channel to one dimension.

V = δ(G(X̃)) ∈ RD×T ′
(6)

where G means the CNN function, V = [V1,V2, ...,VT ′ ] de-
notes the deep speech features, and T ′ is the time dimension
after SE-ResNet, D is the dimension of Vi.

2.3. Attentive Temporal Pooling

Motivated by [15, 16], we utilize the attentive temporal pool-
ing in order to not only make our model can process varying
length inputs, but also to dynamically select more important
information according to the attention mechanisms. The at-
tentive temporal pooling mainly aims to covert a set of local
descriptors Vi into a single global descriptor V′.

di = VTrans
i Vi (7)

αi =
exp(di)∑
i exp(di)

(8)

V′ = W3[concate{µ(αiVi); ζ(αiVi)}] (9)

where µ and ζ denote the mean and variance. Finally, global
descriptor V′ can be acquired by a linear projection W3.

3. EXPERIMENTS AND RESULTS

3.1. Dataset

We conduct our experiments on two public datasets i.e.,
AVEC 2013 and AVEC 2014. AVEC 2013 dataset consists
of 150 videos from 84 subjects. Each subject is required to
perform 14 different tasks according to the instructions on
the computer screen. The duration of each video ranges from
20 to 50 minutes. The average length of each recording is
25 minutes. There are three parts in AVEC 2013: training,
development and test sets, each with 50 samples.

AVEC 2014 is a subset of AVEC 2013, which consists of
two different tasks: Northwind and FreeForm. There are 150
videos for each task that is equally divided into three parts:
training, development and test sets. In this paper, we merge
these two tasks as a new database. Therefore, there are 100
videos for training, development and test sets, respectively.

As for AVEC 2013 and AVEC 2014, the Beck Depres-
sion Inventory-II (BDI-II) is used as the ground truth, which
indicates the depression level.

3.2. Evaluation Metrics

In this work, in order to quantitatively evaluate SDLP re-
sults, root mean square error (RMSE) and mean absolute error

(MAE) are used as evaluation metrics.

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (10)

MAE =
1

N

N∑
i=1

|yi − ŷi| (11)

where yi and ŷi denote the true and predicted BDI-II score of
the i-th sample, respectively.

3.3. Experimental setup

Firstly, we divide each audio sample into several segments,
which has 3s and the overlap of two adjacent segments is
50%. The sampling rate of all generated speech waveform
is 8000 Hz. As for the STFT, the hamming window is 50ms,
window shift is 12.5ms and the fast Fourier transform (FFT)
points are 512. Therefore, the dimension of the spectrogram
is 257. The architecture of deep speech feature extractor is
based on the ResNet18 [14]. We utilize 256 for the dimen-
sion of deep speech features, which means that D is 256. In
addition, we use the Adam as our optimizer, and the learn-
ing rate is 0.002 for AVEC 2013. The learning rate of AVEC
2014 is 0.0006.

3.4. Experimental results

Table 1 and Table 2 show the experimental results for different
SDLP methods on the AVEC 2013 and AVEC 2014 datasets.
CResNet and CSENet mean that we apply the ResNet [14]
and SE-ResNet [13] as our deep speech feature extractor, re-
spectively.

3.4.1. Experimental performance of CResNet and CSENet

From Table 1 we can find that when we use the SE-ResNet
replace the ResNet as the deep feature extractor, the perfor-
mance can be improved. More specifically, compared with
the CResNet method, our proposed CSENet method can re-
duce the RMSE and MAE from 9.42, 7.19 to 9.28, 6.79, re-
spectively. In addition, from Table 2 we can find that although
CSENet gets a worse performance for RMSE than CResNet,
the result of MAE is still better than CResNet. These results
indicate that the deep speech features extracted by SE-ResNet
is more suitable for the SDLP than ResNet. The reason is that
the SE-ResNet with squeeze and excitation operation can au-
tomatically obtain the importance of each feature channel. In
addition, it can also improve the useful features according to
this importance and suppress the features that are not useful
to current task. Therefore, the CSENet can acquire a better
performance than CResNet.

3.4.2. Comparison with other SDLP methods

Table 1 and Table 2 also show the results of other SDLP
methods on the AVEC 2013 and AVEC 2014 datasets. Where
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Table 1. Experimental results for different SDLP methods on
the AVEC 2013 dataset. abs-SENet means that the amplitude
is used as the input feature without the phase information.

Methods RMSE MAE

AVEC 2013 Audio Baseline [17] 14.12 10.35
PLS regression [8] 11.19 9.14

DCNN [9] 10.00 8.20
CNN-LSTM-SVR [6] 9.79 7.48

SAN-CNN [10] 9.65 7.38
STA-EEP [19] 9.50 7.14

abs-SENet 9.72 7.45
CResNet (ours) 9.42 7.19
CSENet (ours) 9.28 6.79

Table 2. Experimental results for different SDLP methods on
the AVEC 2014 dataset.

Methods RMSE MAE

AVEC 2014 Audio Baseline [18] 12.56 10.03
Fisher Vector Encoding [20] 11.51 9.74
PCA+Linear Regression [21] 10.28 8.07

DCNN [9] 9.99 8.19
CNN-LSTM-SVR [6] 9.66 8.02

SAN-CNN [10] 9.57 7.94
STA-EEP [19] 9.13 7.65

abs-SENet 10.04 8.02
CResNet (ours) 9.24 7.18
CSENet (ours) 9.61 7.13

the [8, 9, 10, 17, 18, 20, 21] methods apply the LLDs and
MFCC as the input speech features. The [6] only uses MFCC
as the input speech features. And the amplitude spectrogram
is utilized as the input speech features for [19]. These above
speech features are lost the phase spectrogram information,
which may loses some very important information for SDLP.
In this paper, we apply the complex spectrogram as our
speech features, which contains both the amplitude and phase
spectrograms. From Table 1 we can find that compared with
other SDLP methods, our proposed complex spectrogram-
based SDLP method can get the best performance no matter
RMSE or MAE. In addition, as for the AVEC 2014 dataset,
although our proposed method get worse performance than
[19] for RMSE, it acquires a better result for MAE evaluation
metric. To be our best knowledge, as for the AVEC 2013
dataset, our proposed CSENet method gets the state-of-the-
art performance for MAE evaluation metric. These results
prove the effectiveness of our proposed method. In addition,
these results also demonstrate that the complex spectorgram
is a suitable feature for SDLP task.

3.4.3. Effectiveness of attentive temporal pooling
Fig. 2 shows the visualization results of attentive temporal
pooling embedding for different individuals. The horizontal
axis means the dimension of embedding, and vertical axis is
the time frame after SE-ResNet. (a) is the healthy subject of
No. 319-2. (b) is the mild depression subject of No. 220-
3. (c) is the severe depression subject of No. 237-1. From
Fig. 1 we can find that the more severe the level of depres-
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(c) Severe depression subject of No. 237-1
Fig. 2. The visualization results of attentive temporal pooling
embedding for different individuals. (a) is the healthy subject
of No. 319-2. (b) is the mild depression subject of No. 220-3.
(c) is the severe depression subject of No. 237-1.

sion, the more bright bars in the visualization figure, which
indicates that this embedding is a very discriminative repre-
sentation for SDLP. This result prove that the attentive tempo-
ral pooling can effectively learn depression information and it
is very effective for SDLP.

4. CONCLUSIONS
In order to make full use of speech information, this paper
proposes a CSENet for speech depression level prediction.
The proposed CSENet uses the complex spectrogram as the
input feature, which contains both amplitude and phase spec-
trogram information. In addition, the SE-ResNet is applied
to extract deep speech features. Finally, the attentive tem-
poral pooling is used to dynamically select more important
information according to the attention mechanisms. Experi-
ments on AVEC 2013 and AVEC 2014 demonstrate that our
proposed method is effective for SDLP and the complex spec-
torgram is a suitable feature for speech depression level pre-
diction task. In future, we will explore different architecture
of deep speech feature extractor to pay attention to different
frequency bands.
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