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A B S T R A C T

The phase information was shown useful in fake speech detection. However, the most common reason why
phase-based features are not widely used is phase wrapping. This makes the original phase hard to model
directly. Therefore, it remains a challenge how to utilize the phase information effectively. To address this
issue, this paper proposes a novel subband fusion of the complex spectrogram method for fake speech detection.
The complex spectrogram is used as the input feature, containing both amplitude and phase spectrogram. In
addition, subbands of the complex spectrogram are modeled separately. The idea is motivated by the fact that
each frequency band has a different effect on the fake speech detection task. Finally, to make full use of the
subbands, the subband results are fused. Experimental results on the ASVspoof 2019 LA dataset show that our
proposed system achieves an equal error rate (EER) of 0.68% and a minimum tandem detection cost function
(min t-DCF) of 0.0224.
1. Introduction

Automatic speaker verification (ASV) system aims to confirm the
claimed speaker identity from speech utterances. However, the spoof-
ing attacks can fool the ASV systems, such as replay (prerecorded
audio), impersonation (mimics or twins), text-to-speech (TTS), and
voice conversion (VC) (Wu et al., 2015a). With the development of
TTS and VC, they can generate high-quality speech and threaten ASV
systems.

In order to address the problem of spoofing attacks, the ASVspoof
challenges series have been held in 2015 (Wu et al., 2015b), 2017 (Kin-
nunen et al., 2017), 2019 (Todisco et al., 2019) and 2021 (Yamagishi
et al., 2021). The datasets of the ASVspoof challenge consist of logical
access (LA) and physical access (PA). The LA refers to attacks from TTS
and VC, and the PA focuses on attacks from replay. This paper focuses
on the LA attacks.

To improve the performance of fake speech detection systems,
different front-end acoustic features are investigated, such as log power
spectrogram (LPS), constant Q cepstral coefficients (CQCC), linear fre-
quency cepstral coefficients (LFCC) and so on Kamble et al. (2020),
Pal et al. (2018), Das et al. (2020), Paul et al. (2017) and Wang and
Yamagishi (2021). However, the above features are all based on the
amplitude spectrogram and lose the phase spectrogram information.
Numerous studies (Kulmer and Mowlaee, 2015; Paliwal et al., 2011;
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Fan et al., 2020; Masuyama et al., 2019; Gurugubelli and Vuppala,
2020; Guo et al., 2022) have shown that the phase spectrogram is very
important for speech quality and intelligibility. It is unreasonable to
ignore the phase spectrogram. However, the phase spectrum does not
contain stable patterns (Eldar et al., 2015; Spoorthi et al., 2019), due to
rapidly varying phase changes and phase discontinuities, so we cannot
use it directly. Group delay (GD) (Xiao et al., 2015) is proposed as the
derivative of the phase spectrum along the frequency axis and acquires
a good performance in fake speech detection. Furthermore, in order not
to lose phase information, many works apply the raw waveform as the
input feature (Jung et al., 2019, 2020; Tak et al., 2021; Ma et al., 2021;
Hua et al., 2021; Jung et al., 2022). But compared to time–frequency
(T–F) domain-based features, the raw time-domain waveforms contain
a wealth of information that requires a powerful model to extract.

To address these issues, this paper proposes a novel subband fusion
of the complex spectrogram method for fake speech detection, which
utilizes complex spectrograms as the input features. The complex spec-
trogram contains both amplitude and phase spectrogram, which has
more voiceprint information that can be used for fake speech detection.
Moreover, several studies (Patel and Patil, 2017; Sahidullah et al.,
2015; Sriskandaraja et al., 2016; Witkowski et al., 2017; Garg et al.,
2019; Lin et al., 2018; Yang et al., 2019; Soni et al., 2016; Chettri
et al., 2020; Ling et al., 2021; Liu et al., 2021; Zhang et al., 2021)
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have shown that different frequency bands have different effects on the
fake speech detection task. Motivated by Zhang et al. (2021), we model
different subbands of the complex spectrogram, respectively. Finally,
to make full use of the information of different subbands, we fuse their
output results. Experimental results on the ASVspoof 2019 LA dataset
show that our proposed system achieves an EER of 0.68%. The main
contributions of this study can be summarized as follows:

• To the best of our knowledge, this is the first work that applies
complex spectrogram to the fake speech detection task, which can
exploit both amplitude and phase spectrograms.

• Moreover, we model different subbands of complex spectrogram
respectively and fuse their results finally.

The rest of this paper is organized as follows: The related works
re presented in Section 2. Section 3 explains our proposed method.
ection 4 demonstrates experiments and results. This paper concludes
n Section 5.

. Related works

Artifacts are generally believed to exist in specific subbands (Patel
nd Patil, 2017; Sahidullah et al., 2015; Li and Horaud, 2019), so many
orks are focusing on subband effects. The authors in Sriskandaraja
t al. (2016) propose three triangular filter bank design approaches,
nd identify 0–1 kHz, 2.5–5.5 kHz and 7–8 kHz as the most informative
ubbands. Several studies (Witkowski et al., 2017; Garg et al., 2019; Lin
t al., 2018) focus on the high-frequency subband, and it is proven to
e more robust against unseen spoofing attacks. Yang et al. propose
hree novel subbands transform methods (Yang et al., 2019), experi-
ental results show that they perform better than traditional full-band

ransform methods. Because not all frequency bands are helpful for
ake speech detection tasks, subband autoencoder (Soni et al., 2016) or
ubband modeling framework (Chettri et al., 2020) enable the system
o learn subband-specific features. The latest research in subband Zhang
t al. (2021) demonstrates high-frequency subbands usually lead to
verfitting, while low-frequency subbands are more effective.

There are also some works focus on phase information (Saratx-
ga et al., 2016; Bharath and Kumar, 2022; Peng et al., 2021). The
ommonly used phase features are the phase spectrogram (Balamurali
t al., 2019) and cosine phase based on short-time Fourier trans-
orm, group delay function (GDF) and instantaneous frequency distri-
ution (IFD) (Alsteris and Paliwal, 2007). Saratxaga et al. (2009) pro-
ose the relative phase shift (RPS) representation of harmonic phase,
hich achieves good results when used for synthetic speech detec-

ion (De Leon et al., 2011). In Wu et al. (2012), in order to distinguish
he converted speech from the bonafide signal, cosine-normalized phase
nd modified group delay function phase spectrum based features are
roposed. Based on GDF, various phase-based features are proposed,
uch as modified group delay (MGD) (Xiao et al., 2015) and rela-
ive phase information (Wang et al., 2015). Recent work proposes a
hase network (Kim and Ban, 2022) that processes phase informa-
ion separately but phase features are still difficult to use effectively
urrently.

. Our proposed subband fusion of complex spectrogram

In this section, we will illustrate the process of the complex spectro-
ram and our proposed subbands fusion algorithm. Fig. 1 indicates the
chematic diagram of our proposed method for fake speech detection.

Many of the previous works for fake speech detection tasks lose
he phase spectrogram information, which may lose much critical
nformation. To take advantage of the speech information, we apply the
omplex spectrogram as the input feature that contains both amplitude
nd phase spectrogram. Moreover, different subbands are modeled
espectively. Finally, their results are fused to improve the performance
f the fake speech detection systems furthermore.
2

3.1. Complex spectrogram

The complex spectrogram is applied as the input feature for the fake
speech detection task. It can be acquired as follows:

𝐗𝑟[𝑡, 𝑓 ] + 𝑖 ∗ 𝐗𝑖[𝑡, 𝑓 ] = 𝑆𝑇𝐹𝑇 (x[𝑘]) (1)

where the 𝐱[𝑘] denotes the raw speech waveform in the time-domain, 𝑘
is the time index of speech signals. 𝑆𝑇𝐹𝑇 means the operation of short-
time Fourier transformation (STFT), which converts the time-domain
speech into the T–F domain. 𝐗𝑟 ∈ R𝐹×𝑇 and 𝐗𝑖 ∈ R𝐹×𝑇 are the
corresponding real and imaginary part of STFT, respectively. 𝑡 is the
index of the time frame and 𝑓 is the index of the frequency bin. ∗
denotes a multiplication operation.

Then the real 𝐗𝑟 and imaginary 𝐗𝑖 part of STFT are stacked together
s the 𝐗𝑐𝑜𝑚𝑝𝑙𝑒𝑥:

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 𝑠𝑡𝑎𝑐𝑘(𝐗𝑟,𝐗𝑖) ∈ R2×𝐹×𝑇 (2)

where the 𝑠𝑡𝑎𝑐𝑘(∗) means the stack operation. 𝐹 and 𝑇 are the number
of frequency bin and time frame, respectively.

Different from the complex spectrogram, the log power spectrogram
(LPS) loses the phase information:

𝐗𝐿𝑃𝑆 = 𝑙𝑜𝑔
√

(𝐗𝑟)2 + (𝐗𝑖)2 ∈ R𝐹×𝑇 (3)

where 𝐗𝐿𝑃𝑆 represents LPS feature.

3.2. Other phase features

To compare the performance of other phase features, we used phase
angle (PA), group delay (GD) and modified group delay (MGD).

3.2.1. Phase angle
The phase angle is applied as an input feature to the fake speech

detection task. It can be acquired as follows:

𝐗𝑃𝐴 = tan−1
(

𝑋𝑖∕𝑋𝑟
)

(4)

where 𝐗𝑃𝐴 represents PA feature.

3.2.2. Group delay
We also use the group delay function (Hegde et al., 2004) as a

feature, which is represented as follows

𝐗𝐺𝐷 =
𝑋𝑟 ∗ 𝑌𝑟 +𝑋𝑖 ∗ 𝑌𝑖

|𝑋|

2
(5)

The 𝑋𝑟 and 𝑋𝑖 represent the real and imaginary parts of 𝑋, re-
pectively. 𝑌𝑟 and 𝑌𝑖 are the real and imaginary parts of the Fourier
ransform spectrum of 𝑘𝑥(𝑘), respectively. 𝐗𝐺𝐷 is the group delay (GD)
eature.

.2.3. Modified group delay
The modified group delay function (Wu et al., 2013) is defined as

ollows:

𝜌 =
𝑋𝑟 ∗ 𝑌𝑟 + 𝑌𝑖 ∗ 𝑋𝑖

|𝑆|2𝜌
(6)

𝐗𝑀𝐺𝐷 =
𝜏𝜌
|

|

|

𝜏𝜌
|

|

|

|

|

|

𝜏𝜌
|

|

|

𝛾
(7)

|𝑆|2 is the smoothed version to 𝑋. 𝜌 and 𝛾 are in (0, 1] hyperparam-

eters. 𝐗𝑀𝐺𝐷 is the modified group delay (MGD) feature.
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Fig. 1. The schematic diagram of our proposed method for fake speech detection.
3.3. Subband fusion of complex spectrogram

It has been demonstrated that different frequency bands have differ-
ent effects on the fake speech detection task. In this paper, we divide
the complex spectrogram into two subbands, namely low subband
(0–4 kHz) 𝐗𝐿

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 and high subband (4–8 kHz) 𝐗𝐻
𝑐𝑜𝑚𝑝𝑙𝑒𝑥. Same as

the complex spectrogram, the LPS is also divided into low and high
subbands: 𝐗𝐿

𝐿𝑃𝑆 and 𝐗𝐻
𝐿𝑃𝑆 .

Motivated by Zhang et al. (2021), we use the squeeze-and-excitation
ResNet (SENet) (Hu et al., 2018) as the classifier for different subbands.
These different subbands are fed into each SENet to acquire their scores.
To take full advantage of the information of each subband, we propose
a two-stage fusion algorithm and further improve the performance of
fake speech detection systems. Firstly, we fuse the 𝐗𝐿

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 and 𝐗𝐻
𝑐𝑜𝑚𝑝𝑙𝑒𝑥

at score-level:

𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑥 = 𝛼 ∗ 𝑆𝐿
𝑐𝑜𝑚𝑝𝑙𝑒𝑥 + (1 − 𝛼) ∗ 𝑆𝐻

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 (8)

where the 𝑆𝐿
𝑐𝑜𝑚𝑝𝑙𝑒𝑥 and 𝑆𝐻

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 denote the scores of 𝐗𝐿
𝑐𝑜𝑚𝑝𝑙𝑒𝑥 and

𝐗𝐻
𝑐𝑜𝑚𝑝𝑙𝑒𝑥, respectively. The 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑥 is the fusion score of dual-band

complex spectrogram. 𝛼 is the weight of the first-stage fusion.
Furthermore, since the low subband Zhang et al. (2021) of LPS is

more effective for the fake speech detection task. We apply low subband
LPS and perform the second-stage fusion as follows:

𝑆 = 𝛽 ∗ 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑥 + (1 − 𝛽) ∗ 𝑆𝐿
𝐿𝑃𝑆 (9)

where 𝑆 is the final fusion score, 𝑆𝐿
𝐿𝑃𝑆 is the low subband score of LPS.

𝛽 is the weight of the second-stage fusion.

4. Experiments and results

4.1. Dataset

ASVspoof 2019 LA dataset: We conduct our experiments on the
ASVspoof 2019 LA database, which consists of three parts: training,
development and evaluation sets. The sampling rate of all generated
speech waveforms is 16000 Hz and 16-bit quantization. As for the
LA subset, the spoofing attacks are generated by various TTS and VC
algorithms. The training and development subsets contain the same
6 attacks (A01–A06). There are 2 VC and 4 TTS algorithms. The
evaluation set contains 13 attacks (7 TTS and 6 VC), consisting of 2
known algorithms and 11 unseen algorithms.

ASVspoof 2021 LA dataset: Unlike the ASVspoof 2019 LA dataset,
the ASVspoof 2021 LA dataset has only the evaluation set, and we
still need the data from ASVspoof 2019 LA for training. In addition,
the ASVspoof 2021 LA dataset introduces communication interference
based on different bandwidths and codecs with about 180,000 speech.
3

These interferences have the potential to obscure the distinguishing
information of the speech, further adding to the challenge.

In this work, to evaluate the results of different fake speech detec-
tion systems, the EER and the minimum tandem detection cost function
(min t-DCF) (Kinnunen et al., 2020) are used as the evaluation metrics.
The EER is the operating point where the false acceptance rate (FAR)
meets the false rejection rate (FRR).

4.2. Experimental setup

As for the STFT operation, the length of the Blackman window is
1728 with 130 hop length. Therefore, the dimension of the spectrogram
is 865. To form batches, the time frames are fixed to 600 by truncating
or concatenating. The first 0–433 dimension is used as the low subband,
and the last 433–865 dimension is used as the high subband. Therefore,
the shape of the low subband and the high subband are set to 433 × 600
and 432 × 600, respectively. To reduce the impact from communication
interference, we used data augmentation when training the model used
for the evaluation of the ASVspoof 2021 LA dataset. Specifically, we
introduced the RawBoost (Tak et al., 2022) data enhancement method,
using a combination of linear and nonlinear noise and impulse signal
independent noise.

Same as Zhang et al. (2021), the SENet34 (Hu et al., 2018) is
applied as the classifier for different subbands. Moreover, to verify the
effectiveness of features, we also used the other network to model,
which are Light-CNN (LCNN) (Lavrentyeva et al., 2017) and Attention-
CNN (ACNN) (Ling et al., 2021). All settings are the same as above
except for the network. All experiments in this paper were run three
times and the best results were taken.

We utilize the angular margin-based softmax (A-softmax) (Liu et al.,
2017) as loss function. The batch size is 64, and the initial learning rate
is 0.0001. For the first 1000 warm-up steps, the learning rate increases
linearly and decreases proportionally to the inverse square root of the
number of steps. In addition, we use the Adam as our optimizer with
𝛽1 = 0.9, 𝛽2 = 0.98, 𝜖 = 10−9 and weight decay 10−4. The number of
epochs is 32. The weights of the first-stage and second-stage fusion 𝛼
and 𝛽 are set to 0.5.

4.3. Experimental results

4.3.1. Analysis of subband fusion results
Table 1 shows the EER results of our proposed second-stage fusion

system. Table 2 shows the EER results fused between different sub-
bands, calculated separately for each attack algorithm. Due to space
limitations, the Table 2 shows the results based on the ACNN network.
From Tables 1 and 2 we can derive the following:
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Table 1
The EER (%) for our proposed second stage fusion systems on the ASVspoof 2019 LA
dataset. ‘‘+’’ denotes the fusion operation.

Systems EER(SENet) EER(LCNN) EER(ACNN)

PA(L+H)+LPS(L) 0.95 2.21 1.03
Complex(L+H)+LPS(L) Ours 0.70 1.32 0.68
GD(L+H)+LPS(L) 1.15 1.29 1.34
MGD(L+H)+LPS(L) 1.11 1.53 1.04

PA(L+H)+LPS(Full) 1.15 4.08 2.36
Complex(L+H)+LPS(Full) 1.46 3.92 3.17
GD(L+H)+LPS(Full) 2.46 4.52 4.11
MGD(L+H)+LPS(Full) 2.14 4.52 2.75

PA(L+H)+LPS(L+H) 0.96 1.82 1.40
Complex(L+H)+LPS(L+H) 1.15 2.70 2.36
GD(L+H)+LPS(L+H) 1.11 2.66 1.37
MGD(L+H)+LPS(L+H) 1.04 3.03 1.06

Table 2
Separately computed EER (%) results based ACNN for evaluation (A07–A19) subsets on
the ASVspoof 2019 LA dataset. Where ‘‘F1, F2, F3, and F4’’ denote the PA(L+H)+LPS(L),

omplex(L+H)+LPS(L), GD(L+H)+LPS(L), and MGD(L+H)+LPS(L), respectively.
Systems Evaluation set

Seen attacks Unseen attacks

A16 A19 A07 A08 A09 A10 A11 A12 A13 A14 A15 A17 A18

F1 0.34 1.19 0.10 1.99 0.08 0.32 0.42 0.20 0.13 0.09 0.26 2.28 0.73
F2 0.16 0.42 0.01 0.81 0.00 0.40 0.36 0.16 0.18 0.05 0.20 1.78 0.97
F3 0.57 1.42 0.24 2.50 0.05 0.58 0.51 0.32 0.13 0.13 0.46 2.35 1.91
F4 0.36 1.07 0.04 2.23 0.02 0.36 0.34 0.12 0.17 0.08 0.24 1.98 1.28

(1) Table 1 shows the fusion results based on different subbands
nd different phase features of LPS. Overall, LPS-based low subband
nd phase signatures give the best results. This is because the low
ubband modeling performance of LPS is inherently better than the
esult of full subband and high and low subband fusion. In addition,
e also utilize several existing networks for modeling, among which

he ACNN-based network has the best results. This is because the ACNN
etwork contains frequency attention and channel attention modules.
hen modeling phase features and amplitude spectrum features, it can

ay more attention to the essential information of different features,
nd the final fusion stage can be more complementary. Among them,
omplex (L + H) + LPS (L) performed the best, and its EER result

reached 0.68%.
(2) Table 2 shows the fusion results of phase features and the LPS

low subband for specific individual attacks. For visible attacks, espe-
cially the A19 attack, the performance of PA, GD, and MGD features is
significantly inferior to that of complex spectral features. For invisible
attacks, the A08 and A17 algorithms are the most difficult to detect.
However, the EERs of the complex spectral features in the A08 and A17
attacks are 0.81% and 1.78% respectively, which are also significantly
better than other phase features. This may be because the complex
spectrum contains both amplitude information and phase information,
and has more discriminative information.

4.3.2. Analysis of different subband results
Fig. 2 shows the single system results (EER and t-DCF) based on

different networks. ‘‘L’’ and ‘‘H’’ denote the low and high subbands,
respectively. ‘‘Full’’ means applying the full frequency bands. Table 3
shows the first-stage fusion results for disjoint subbands between their
individual features. Table 4 shows the EER results for each subband,
calculated separately for each attack algorithm. From Fig. 2, Tables 3
and 4 we can draw the following points:

(1) Regardless of whether it is LPS or PA, etc., the high subband
has worse performance than the low subband. Specifically, the complex
spectrum low subband based on SENet has an EER of 5.36%, but the
high subband is 20.00%. As for LPS, the EER of the low subband is
1.14%, but the high subband is 14.10%. The reason is that although
4

Table 3
The results of EER (%) for our proposed first stage fusion systems on the ASVspoof
2019 LA dataset. ‘‘+’’ denotes the fusion operation.

Systems EER(SENet) EER(LCNN) EER(ACNN)

LPS(L+H) 1.16 2.42 4.63

PA(L+H ) 3.17 5.91 3.64
PA(L)+LPS(H ) 3.41 5.28 6.97
PA(H )+ LPS(L) 1.00 2.70 1.37

Complex(L+H ) 3.67 5.00 5.03
Complex(L)+LPS(H) 2.95 4.66 5.51
Complex(H)+LPS(L) 1.56 2.95 3.33

GD(L+H ) 5.16 6.37 6.89
GD(L)+LPS(H) 3.38 4.43 7.05
GD(H )+LPS(L) 1.64 4.18 2.61

MGD(L+H ) 5.69 6.36 4.47
MGD(L)+LPS(H ) 3.15 4.93 7.69
MGD(H )+LPS(L) 1.65 3.73 1.46

the high-frequency features are more discriminative because of the
worse generation for TTS and VC on high frequency, this may lead to
overfitting.

(2) Compared with the full band system, fusing the low and high
subbands for complex spectrograms can improve the performance of
fake speech detection systems. For example, the min t-DCF and EER of
‘‘Complex(Full)’’ are 0.2301 and 9.34%, but for ‘‘Complex(L + H)’’, they
are 0.1212 and 3.67%, respectively. These results indicate that different
frequency bands have different effects on the fake speech detection
task, and dealing with different subbands respectively is beneficial to
the fake speech detection task.

(3) For the LPS feature, the EER results are 1.14% and 1.16% for
LPS(L) and LPS(L + H), respectively, but LPS(L) + PA(H)’s EER result
is 1.00%. The reason is that the performance of LPS(L) is already
excellent, and LPS(H) may not be able to obtain further gain effect by
compensating high-frequency information only. However, PA(H) can
compensate for both phase information and high-frequency informa-
tion. This indicates that both the high frequency and phase of the
features contain effective information to distinguish between real and
fake speech.

(4) As can be seen from Table 1, the amplitude-based LPS features
are still the most discriminative, but the phase itself is irregular, so
the phase-based features still perform poorly when modeled alone. It
is well known that A17 (waveform filtering) is the most notorious
attack algorithm. However, among the four based-phase features, the
complex spectrum and MGD features of the fusion system perform
better for the A17 attack. But, the MGD feature performs significantly
worse for the visible attacks A16 and A19. Taken together, we conclude
that the complex spectrum feature can be well modeled and has good
generalization ability.

4.3.3. Comparison with other systems
To evaluate the performance of our proposed method, we com-

pared the proposed system with other state-of-the-art systems on the
evaluation dataset of the ASVspoof 2019 LA database. Besides the top-
performance systems (T05, T45 and T60) of ASVspoof 2019 challenge,
the other recent published novel systems are also compared, such as
subband models (Zhang et al., 2021), raw waveform based models (Tak
et al., 2021; Ma et al., 2021) and frequency attention model (Ling et al.,
2021).

Table 5 shows the performance comparison with other systems.
We can observe that our proposed complex subbands fusion system
achieves an EER of 0.70%, which outperforms the second-ranked sys-
tem (EER 1.12%) among all known systems. In terms of T45, T60, Ling
et al. and FFT-L-SENet, features of the above systems are based on the
amplitude spectrogram, which loses the phase information. Although
the RW-Resnet and RawNet2 systems are based on the raw waveform
without the phase information lost, their performance is worse than



Speech Communication 155 (2023) 102988C. Fan et al.
Fig. 2. The results of min t-DCF and EER for our proposed different single systems on ASVspoof 2019 LA dataset. ‘‘L’’ and ‘‘H’’ denote the low and high subbands, respectively.
‘‘Full’’ means applying the full frequency bands.
Table 4
Separately computed EER (%) results based ACNN for evaluation (A07-A19) subsets on the ASVspoof 2019 LA dataset. For
visualization purposes, the poorer performing cells have a darker gray background.
Systems Evaluation set

Seen attacks Unseen attacks

A16 A19 A07 A08 A09 A10 A11 A12 A13 A14 A15 A17 A18

LPS_L 0.6 1.9 0.2 4.3 0.1 0.5 0.6 0.2 0.1 0.1 0.4 3.1 1.32
LPS_H 0.0 0.1 0.0 0.4 0.1 10.2 87.66 25.3 47.9 3.4 11.4 43.0 7.4
LPS_Full 0.0 0.0 1.1 4.0 0.2 1.7 1.5 1.4 0.6 1.1 1.1 5.8 23.2
Complex_L 1.7 9.9 1.1 4.0 0.2 1.7 1.5 1.4 0.6 1.1 1.1 5.8 23.2
Complex_H 0.3 0.3 0.0 0.8 0.3 15.6 23.5 39.3 61.7 6.4 19.3 38.8 17.3
Complex_Full 0.0 0.0 0.0 0.0 0.4 9.8 26.9 25.1 19.8 0.8 15.6 28.3 14.7
PA_L 2.7 9.5 1.2 4.3 1.1 1.8 2.0 1.8 1.4 1.3 2.3 12.3 5.0
PA_H 10.2 16.5 4.3 8.5 17.6 28.4 32.4 38.8 28.6 16.5 13.4 36.4 14.1
PA_Full 1.2 3.8 0.6 1.3 1.5 3.0 2.5 3.2 1.6 1.4 3.5 13.5 5.7
GD_L 1.3 4.9 0.5 2.7 0.2 1.7 2.2 1.6 0.2 0.4 1.0 4.2 19.1
GD_H 53.6 43.2 39.8 43.1 46.5 48.3 22.7 50.1 35.2 39.3 50.2 41.5 42.5
GD_Full 1.5 4.7 0.5 4.4 0.3 1.6 2.0 1.3 0.3 0.7 1.4 5.7 21.5
MGD_L 1.4 4.9 0.9 4.3 0.3 2.2 2.7 1.7 0.8 0.9 1.8 7.2 20.4
MGD_H 30.2 37.5 11.0 12.0 3.6 20.5 6.2 36.1 64.6 9.8 20.5 43.9 25.4
MGD_Full 1.5 5.5 0.9 4.2 0.4 2.4 3.0 1.9 0.6 0.8 1.5 6.8 20.7
our proposed method. The results verify that our proposed complex
subbands fusion system is quite effective for fake speech detection.
5

Because the front-end feature is based on the complex spectrogram,
which can fully use all the speech information.
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Table 5
Comparison with other systems on the evaluation set of the ASVspoof 2019 LA
database.

Single systems t-DCF EER%

FFT-L-SENet (Zhang et al., 2021) 0.0368 1.14
Ling et al. (2021) 0.0510 1.87
GMM-LFCC (Tak et al., 2020) 0.0904 3.50
RawNet2 (Tak et al., 2021) 0.1294 4.66

Fusion systems t-DCF EER%

T05 (Todisco et al., 2019) 0.0069 0.22
T45 (Lavrentyeva et al., 2019) 0.0510 1.84
T60 (Chettri et al., 2019) 0.0755 2.64
GMM fusion (Tak et al., 2020) 0.0740 2.92
FFT dual-band fusion (Zhang et al., 2021) 0.0498 1.56
RW-Resnet (Ma et al., 2021) 0.0820 2.98

Complex(L+H)+LPS(L) (ours) 0.0224 0.68

Table 6
The EER (%) for our proposed second stage fusion systems on the ASVspoof 2021 LA
dataset. ‘‘+’’ denotes the fusion operation.

Systems EER(SENet) EER(LCNN) EER(ACNN)

PA(L+H)+LPS(L) 15.71 17.90 18.71
Complex(L+H)+LPS(L) Ours 5.99 9.49 6.88
GD(L+H)+LPS(L) 6.78 11.31 9.65
MGD(L+H)+LPS(L) 7.20 10.62 10.17

PA(L+H)+LPS(Full) 26.00 30.70 29.07
Complex(L+H)+LPS(Full) 7.51 11.43 11.10
GD(L+H)+LPS(Full) 11.47 16.18 14.76
MGD(L+H)+LPS(Full) 11.76 16.17 15.73

PA(L+H)+LPS(L+H) 18.09 19.91 20.64
Complex(L+H)+LPS(L+H) 6.54 10.57 7.59
GD(L+H)+LPS(L+H) 11.47 16.18 14.76
MGD(L+H)+LPS(L+H) 8.41 11.83 12.18

Table 7
Comparison of experimental results based on SENet in ASVspoof 2021 LA database
with other systems. DA denotes data augmentation.

Systems EER t-DCF

CQCC-GMM (Yamagishi et al., 2021) 15.62 0.4974
LFCC-GMM (Yamagishi et al., 2021) 19.30 0.5758
LFCC-LCNN (Yamagishi et al., 2021) 9.26 0.3445
RawNet2 (Yamagishi et al., 2021) 9.50 0.4257

LPS(L) 14.43 0.3688
Complex(L) 6.76 0.3166
Complex(H) 41.79 0.8859
Complex(L+H) 6.58 0.3154
Complex(L+H)+LPS(L) 5.99 0.3081

LPS(L)(DA) 5.16 0.3148
Complex(L)(DA) 7.04 0.3342
Complex(H)(DA) 19.51 0.4737
Complex(L+H)(DA) 7.00 0.3304
Complex(L+H)+LPS(L)(DA) 3.98 0.2794

We also have an advantage over the state-of-the-art system (T05)
Nautsch et al., 2021), which is obtained by fusing seven single sys-
ems, including two ResNet systems, four MobileNet systems, and one
enseNet system. Therefore, our proposed ‘‘Complex(L + H) + LPS(L)’’

ystem has only three systems fused, which shows that the number of
used systems can be further reduced by making full use of the voice
nformation, and also has good performance.

.3.4. Analysis of the results in the ASVspoof 2021 LA dataset
To further validate the effectiveness of our approach, we evaluated

t on the ASVspoof 2021 LA dataset. Table 6 shows the results of the
ystem with different feature fusions. Table 7 shows the results of our
6

roposed system and the benchmark system. The first four rows are
the results of the benchmark system. From Table 7, we can see the
following two points: (1) the results of ASVspoof 2021 LA are worse
than those of ASVspoof 2019 LA due to the introduction of communi-
cation interference in the dataset, which may mask the distinguishing
information between real and false speech; (2) our proposed method
is still valid on the ASVspoof 2021 LA dataset set, where the EER of
the ‘‘LPS(L)’’ system is 14.43% and t-DCF is 0.3688, while the EER and
t-DCF of the ‘‘Complex(L + H) + LPS(L)’’ system are 5.99% and 0.3081,
espectively, which show a significant improvement in the system
erformance. This further proves that our method can be generalized
o other datasets and is very effective. In addition, data augmentation
an effectively improve the generalization of the system, and the EER
f the ‘‘Complex(L + H) + LPS(L)’’ system can reach 3.98%.

. Conclusions

In order to make full use of speech information, this paper pro-
oses a novel complex spectrogram subbands fusion method for fake
peech detection. We apply the complex spectrogram as the input
eature, containing both amplitude and phase spectrogram information.
n addition, different subbands are modeled respectively. Finally, the
wo-stage fusion algorithm is applied to improve the performance of
ake speech detection further. The experimental results on the ASVspoof
019 LA dataset show that our proposed method achieves a min t-DCF
f 0.0224 and an EER of 0.68%, second only to the T05 system. In the
uture, we will explore frequency attention with complex spectrogram
o automatically fuse each frequency band.
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